Metamath Proof Explorer


Theorem nmolb

Description: Any upper bound on the values of a linear operator translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015) (Proof shortened by AV, 26-Sep-2020)

Ref Expression
Hypotheses nmofval.1 N = S normOp T
nmofval.2 V = Base S
nmofval.3 L = norm S
nmofval.4 M = norm T
Assertion nmolb S NrmGrp T NrmGrp F S GrpHom T A 0 A x V M F x A L x N F A

Proof

Step Hyp Ref Expression
1 nmofval.1 N = S normOp T
2 nmofval.2 V = Base S
3 nmofval.3 L = norm S
4 nmofval.4 M = norm T
5 elrege0 A 0 +∞ A 0 A
6 1 2 3 4 nmoval S NrmGrp T NrmGrp F S GrpHom T N F = sup r 0 +∞ | x V M F x r L x * <
7 ssrab2 r 0 +∞ | x V M F x r L x 0 +∞
8 icossxr 0 +∞ *
9 7 8 sstri r 0 +∞ | x V M F x r L x *
10 infxrcl r 0 +∞ | x V M F x r L x * sup r 0 +∞ | x V M F x r L x * < *
11 9 10 mp1i S NrmGrp T NrmGrp F S GrpHom T sup r 0 +∞ | x V M F x r L x * < *
12 6 11 eqeltrd S NrmGrp T NrmGrp F S GrpHom T N F *
13 12 xrleidd S NrmGrp T NrmGrp F S GrpHom T N F N F
14 1 2 3 4 nmogelb S NrmGrp T NrmGrp F S GrpHom T N F * N F N F r 0 +∞ x V M F x r L x N F r
15 12 14 mpdan S NrmGrp T NrmGrp F S GrpHom T N F N F r 0 +∞ x V M F x r L x N F r
16 13 15 mpbid S NrmGrp T NrmGrp F S GrpHom T r 0 +∞ x V M F x r L x N F r
17 oveq1 r = A r L x = A L x
18 17 breq2d r = A M F x r L x M F x A L x
19 18 ralbidv r = A x V M F x r L x x V M F x A L x
20 breq2 r = A N F r N F A
21 19 20 imbi12d r = A x V M F x r L x N F r x V M F x A L x N F A
22 21 rspccv r 0 +∞ x V M F x r L x N F r A 0 +∞ x V M F x A L x N F A
23 16 22 syl S NrmGrp T NrmGrp F S GrpHom T A 0 +∞ x V M F x A L x N F A
24 5 23 syl5bir S NrmGrp T NrmGrp F S GrpHom T A 0 A x V M F x A L x N F A
25 24 3impib S NrmGrp T NrmGrp F S GrpHom T A 0 A x V M F x A L x N F A