Metamath Proof Explorer


Theorem nmolb2d

Description: Any upper bound on the values of a linear operator at nonzero vectors translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypotheses nmofval.1 N = S normOp T
nmofval.2 V = Base S
nmofval.3 L = norm S
nmofval.4 M = norm T
nmolb2d.z 0 ˙ = 0 S
nmolb2d.1 φ S NrmGrp
nmolb2d.2 φ T NrmGrp
nmolb2d.3 φ F S GrpHom T
nmolb2d.4 φ A
nmolb2d.5 φ 0 A
nmolb2d.6 φ x V x 0 ˙ M F x A L x
Assertion nmolb2d φ N F A

Proof

Step Hyp Ref Expression
1 nmofval.1 N = S normOp T
2 nmofval.2 V = Base S
3 nmofval.3 L = norm S
4 nmofval.4 M = norm T
5 nmolb2d.z 0 ˙ = 0 S
6 nmolb2d.1 φ S NrmGrp
7 nmolb2d.2 φ T NrmGrp
8 nmolb2d.3 φ F S GrpHom T
9 nmolb2d.4 φ A
10 nmolb2d.5 φ 0 A
11 nmolb2d.6 φ x V x 0 ˙ M F x A L x
12 2fveq3 x = 0 ˙ M F x = M F 0 ˙
13 fveq2 x = 0 ˙ L x = L 0 ˙
14 13 oveq2d x = 0 ˙ A L x = A L 0 ˙
15 12 14 breq12d x = 0 ˙ M F x A L x M F 0 ˙ A L 0 ˙
16 11 anassrs φ x V x 0 ˙ M F x A L x
17 0le0 0 0
18 9 recnd φ A
19 18 mul01d φ A 0 = 0
20 17 19 breqtrrid φ 0 A 0
21 eqid 0 T = 0 T
22 5 21 ghmid F S GrpHom T F 0 ˙ = 0 T
23 8 22 syl φ F 0 ˙ = 0 T
24 23 fveq2d φ M F 0 ˙ = M 0 T
25 4 21 nm0 T NrmGrp M 0 T = 0
26 7 25 syl φ M 0 T = 0
27 24 26 eqtrd φ M F 0 ˙ = 0
28 3 5 nm0 S NrmGrp L 0 ˙ = 0
29 6 28 syl φ L 0 ˙ = 0
30 29 oveq2d φ A L 0 ˙ = A 0
31 20 27 30 3brtr4d φ M F 0 ˙ A L 0 ˙
32 31 adantr φ x V M F 0 ˙ A L 0 ˙
33 15 16 32 pm2.61ne φ x V M F x A L x
34 33 ralrimiva φ x V M F x A L x
35 1 2 3 4 nmolb S NrmGrp T NrmGrp F S GrpHom T A 0 A x V M F x A L x N F A
36 6 7 8 9 10 35 syl311anc φ x V M F x A L x N F A
37 34 36 mpd φ N F A