Step |
Hyp |
Ref |
Expression |
1 |
|
nmofval.1 |
|
2 |
|
nmoi.2 |
|
3 |
|
nmoi.3 |
|
4 |
|
nmoi.4 |
|
5 |
|
nmoi2.z |
|
6 |
|
nmoleub.1 |
|
7 |
|
nmoleub.2 |
|
8 |
|
nmoleub.3 |
|
9 |
|
nmoleub.4 |
|
10 |
|
nmoleub.5 |
|
11 |
7
|
ad2antrr |
|
12 |
|
eqid |
|
13 |
2 12
|
ghmf |
|
14 |
8 13
|
syl |
|
15 |
14
|
ad2antrr |
|
16 |
|
simprl |
|
17 |
|
ffvelrn |
|
18 |
15 16 17
|
syl2anc |
|
19 |
12 4
|
nmcl |
|
20 |
11 18 19
|
syl2anc |
|
21 |
6
|
adantr |
|
22 |
2 3 5
|
nmrpcl |
|
23 |
22
|
3expb |
|
24 |
21 23
|
sylan |
|
25 |
20 24
|
rerpdivcld |
|
26 |
25
|
rexrd |
|
27 |
1
|
nmocl |
|
28 |
6 7 8 27
|
syl3anc |
|
29 |
28
|
ad2antrr |
|
30 |
9
|
ad2antrr |
|
31 |
6 7 8
|
3jca |
|
32 |
31
|
adantr |
|
33 |
1 2 3 4 5
|
nmoi2 |
|
34 |
32 33
|
sylan |
|
35 |
|
simplr |
|
36 |
26 29 30 34 35
|
xrletrd |
|
37 |
36
|
expr |
|
38 |
37
|
ralrimiva |
|
39 |
|
0le0 |
|
40 |
|
simpllr |
|
41 |
40
|
recnd |
|
42 |
41
|
mul01d |
|
43 |
39 42
|
breqtrrid |
|
44 |
|
fveq2 |
|
45 |
8
|
ad2antrr |
|
46 |
|
eqid |
|
47 |
5 46
|
ghmid |
|
48 |
45 47
|
syl |
|
49 |
44 48
|
sylan9eqr |
|
50 |
49
|
fveq2d |
|
51 |
7
|
ad3antrrr |
|
52 |
4 46
|
nm0 |
|
53 |
51 52
|
syl |
|
54 |
50 53
|
eqtrd |
|
55 |
|
fveq2 |
|
56 |
6
|
ad2antrr |
|
57 |
3 5
|
nm0 |
|
58 |
56 57
|
syl |
|
59 |
55 58
|
sylan9eqr |
|
60 |
59
|
oveq2d |
|
61 |
43 54 60
|
3brtr4d |
|
62 |
61
|
a1d |
|
63 |
|
simpr |
|
64 |
7
|
ad2antrr |
|
65 |
14
|
adantr |
|
66 |
65 17
|
sylan |
|
67 |
64 66 19
|
syl2anc |
|
68 |
67
|
adantr |
|
69 |
|
simpllr |
|
70 |
6
|
adantr |
|
71 |
22
|
3expa |
|
72 |
70 71
|
sylanl1 |
|
73 |
68 69 72
|
ledivmul2d |
|
74 |
73
|
biimpd |
|
75 |
63 74
|
embantd |
|
76 |
62 75
|
pm2.61dane |
|
77 |
76
|
ralimdva |
|
78 |
7
|
adantr |
|
79 |
8
|
adantr |
|
80 |
|
simpr |
|
81 |
10
|
adantr |
|
82 |
1 2 3 4
|
nmolb |
|
83 |
70 78 79 80 81 82
|
syl311anc |
|
84 |
77 83
|
syld |
|
85 |
84
|
imp |
|
86 |
85
|
an32s |
|
87 |
28
|
ad2antrr |
|
88 |
|
pnfge |
|
89 |
87 88
|
syl |
|
90 |
|
simpr |
|
91 |
89 90
|
breqtrrd |
|
92 |
|
ge0nemnf |
|
93 |
9 10 92
|
syl2anc |
|
94 |
9 93
|
jca |
|
95 |
|
xrnemnf |
|
96 |
94 95
|
sylib |
|
97 |
96
|
adantr |
|
98 |
86 91 97
|
mpjaodan |
|
99 |
38 98
|
impbida |
|