Step |
Hyp |
Ref |
Expression |
1 |
|
nmoleub2.n |
|
2 |
|
nmoleub2.v |
|
3 |
|
nmoleub2.l |
|
4 |
|
nmoleub2.m |
|
5 |
|
nmoleub2.g |
|
6 |
|
nmoleub2.w |
|
7 |
|
nmoleub2.s |
|
8 |
|
nmoleub2.t |
|
9 |
|
nmoleub2.f |
|
10 |
|
nmoleub2.a |
|
11 |
|
nmoleub2.r |
|
12 |
|
nmoleub2a.5 |
|
13 |
|
nmoleub2lem2.6 |
|
14 |
|
nmoleub2lem2.7 |
|
15 |
|
lmghm |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
16 17
|
ghmid |
|
19 |
9 15 18
|
3syl |
|
20 |
19
|
fveq2d |
|
21 |
8
|
elin1d |
|
22 |
|
nlmngp |
|
23 |
4 17
|
nm0 |
|
24 |
21 22 23
|
3syl |
|
25 |
20 24
|
eqtrd |
|
26 |
25
|
adantr |
|
27 |
26
|
oveq1d |
|
28 |
11
|
adantr |
|
29 |
28
|
rpcnd |
|
30 |
28
|
rpne0d |
|
31 |
29 30
|
div0d |
|
32 |
27 31
|
eqtrd |
|
33 |
7
|
elin1d |
|
34 |
|
nlmngp |
|
35 |
3 16
|
nm0 |
|
36 |
33 34 35
|
3syl |
|
37 |
36
|
adantr |
|
38 |
28
|
rpgt0d |
|
39 |
37 38
|
eqbrtrd |
|
40 |
|
fveq2 |
|
41 |
40
|
breq1d |
|
42 |
|
2fveq3 |
|
43 |
42
|
oveq1d |
|
44 |
43
|
breq1d |
|
45 |
41 44
|
imbi12d |
|
46 |
33 34
|
syl |
|
47 |
2 3
|
nmcl |
|
48 |
46 47
|
sylan |
|
49 |
11
|
adantr |
|
50 |
49
|
rpred |
|
51 |
48 50 14
|
syl2anc |
|
52 |
51
|
imim1d |
|
53 |
52
|
ralimdva |
|
54 |
53
|
imp |
|
55 |
|
ngpgrp |
|
56 |
2 16
|
grpidcl |
|
57 |
46 55 56
|
3syl |
|
58 |
57
|
adantr |
|
59 |
45 54 58
|
rspcdva |
|
60 |
39 59
|
mpd |
|
61 |
32 60
|
eqbrtrrd |
|
62 |
|
simp-4l |
|
63 |
62 7
|
syl |
|
64 |
62 8
|
syl |
|
65 |
62 9
|
syl |
|
66 |
62 10
|
syl |
|
67 |
62 11
|
syl |
|
68 |
62 12
|
syl |
|
69 |
|
eqid |
|
70 |
|
simpllr |
|
71 |
61
|
ad3antrrr |
|
72 |
|
simplrl |
|
73 |
|
simplrr |
|
74 |
54
|
ad3antrrr |
|
75 |
|
fveq2 |
|
76 |
75
|
breq1d |
|
77 |
|
2fveq3 |
|
78 |
77
|
oveq1d |
|
79 |
78
|
breq1d |
|
80 |
76 79
|
imbi12d |
|
81 |
80
|
rspccv |
|
82 |
74 81
|
syl |
|
83 |
|
simpr |
|
84 |
1 2 3 4 5 6 63 64 65 66 67 68 69 70 71 72 73 82 83
|
nmoleub2lem3 |
|
85 |
|
iman |
|
86 |
84 85
|
mpbir |
|
87 |
48 50 13
|
syl2anc |
|
88 |
1 2 3 4 5 6 7 8 9 10 11 61 86 87
|
nmoleub2lem |
|