Metamath Proof Explorer


Theorem nmooval

Description: The operator norm function. (Contributed by NM, 27-Nov-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nmoofval.1 X = BaseSet U
nmoofval.2 Y = BaseSet W
nmoofval.3 L = norm CV U
nmoofval.4 M = norm CV W
nmoofval.6 N = U normOp OLD W
Assertion nmooval U NrmCVec W NrmCVec T : X Y N T = sup x | z X L z 1 x = M T z * <

Proof

Step Hyp Ref Expression
1 nmoofval.1 X = BaseSet U
2 nmoofval.2 Y = BaseSet W
3 nmoofval.3 L = norm CV U
4 nmoofval.4 M = norm CV W
5 nmoofval.6 N = U normOp OLD W
6 2 fvexi Y V
7 1 fvexi X V
8 6 7 elmap T Y X T : X Y
9 1 2 3 4 5 nmoofval U NrmCVec W NrmCVec N = t Y X sup x | z X L z 1 x = M t z * <
10 9 fveq1d U NrmCVec W NrmCVec N T = t Y X sup x | z X L z 1 x = M t z * < T
11 fveq1 t = T t z = T z
12 11 fveq2d t = T M t z = M T z
13 12 eqeq2d t = T x = M t z x = M T z
14 13 anbi2d t = T L z 1 x = M t z L z 1 x = M T z
15 14 rexbidv t = T z X L z 1 x = M t z z X L z 1 x = M T z
16 15 abbidv t = T x | z X L z 1 x = M t z = x | z X L z 1 x = M T z
17 16 supeq1d t = T sup x | z X L z 1 x = M t z * < = sup x | z X L z 1 x = M T z * <
18 eqid t Y X sup x | z X L z 1 x = M t z * < = t Y X sup x | z X L z 1 x = M t z * <
19 xrltso < Or *
20 19 supex sup x | z X L z 1 x = M T z * < V
21 17 18 20 fvmpt T Y X t Y X sup x | z X L z 1 x = M t z * < T = sup x | z X L z 1 x = M T z * <
22 10 21 sylan9eq U NrmCVec W NrmCVec T Y X N T = sup x | z X L z 1 x = M T z * <
23 8 22 sylan2br U NrmCVec W NrmCVec T : X Y N T = sup x | z X L z 1 x = M T z * <
24 23 3impa U NrmCVec W NrmCVec T : X Y N T = sup x | z X L z 1 x = M T z * <