Metamath Proof Explorer


Theorem nmopadji

Description: Property of the norm of an adjoint. Theorem 3.11(v) of Beran p. 106. (Contributed by NM, 22-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypothesis nmopadjle.1 T BndLinOp
Assertion nmopadji norm op adj h T = norm op T

Proof

Step Hyp Ref Expression
1 nmopadjle.1 T BndLinOp
2 1 nmopadjlem norm op adj h T norm op T
3 bdopadj T BndLinOp T dom adj h
4 1 3 ax-mp T dom adj h
5 adjadj T dom adj h adj h adj h T = T
6 4 5 ax-mp adj h adj h T = T
7 6 fveq2i norm op adj h adj h T = norm op T
8 adjbdln T BndLinOp adj h T BndLinOp
9 1 8 ax-mp adj h T BndLinOp
10 9 nmopadjlem norm op adj h adj h T norm op adj h T
11 7 10 eqbrtrri norm op T norm op adj h T
12 nmopre adj h T BndLinOp norm op adj h T
13 9 12 ax-mp norm op adj h T
14 nmopre T BndLinOp norm op T
15 1 14 ax-mp norm op T
16 13 15 letri3i norm op adj h T = norm op T norm op adj h T norm op T norm op T norm op adj h T
17 2 11 16 mpbir2an norm op adj h T = norm op T