Metamath Proof Explorer


Theorem nmopadjlei

Description: Property of the norm of an adjoint. Part of proof of Theorem 3.10 of Beran p. 104. (Contributed by NM, 22-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypothesis nmopadjle.1 T BndLinOp
Assertion nmopadjlei A norm adj h T A norm op T norm A

Proof

Step Hyp Ref Expression
1 nmopadjle.1 T BndLinOp
2 bdopssadj BndLinOp dom adj h
3 2 1 sselii T dom adj h
4 adjvalval T dom adj h A adj h T A = ι f | v T v ih A = v ih f
5 3 4 mpan A adj h T A = ι f | v T v ih A = v ih f
6 oveq2 z = A T v ih z = T v ih A
7 6 eqeq1d z = A T v ih z = v ih f T v ih A = v ih f
8 7 ralbidv z = A v T v ih z = v ih f v T v ih A = v ih f
9 8 riotabidv z = A ι f | v T v ih z = v ih f = ι f | v T v ih A = v ih f
10 eqid z ι f | v T v ih z = v ih f = z ι f | v T v ih z = v ih f
11 riotaex ι f | v T v ih A = v ih f V
12 9 10 11 fvmpt A z ι f | v T v ih z = v ih f A = ι f | v T v ih A = v ih f
13 5 12 eqtr4d A adj h T A = z ι f | v T v ih z = v ih f A
14 13 fveq2d A norm adj h T A = norm z ι f | v T v ih z = v ih f A
15 inss1 LinOp ContOp LinOp
16 lncnbd LinOp ContOp = BndLinOp
17 1 16 eleqtrri T LinOp ContOp
18 15 17 sselii T LinOp
19 inss2 LinOp ContOp ContOp
20 19 17 sselii T ContOp
21 eqid g T g ih z = g T g ih z
22 oveq2 f = w v ih f = v ih w
23 22 eqeq2d f = w T v ih z = v ih f T v ih z = v ih w
24 23 ralbidv f = w v T v ih z = v ih f v T v ih z = v ih w
25 24 cbvriotavw ι f | v T v ih z = v ih f = ι w | v T v ih z = v ih w
26 18 20 21 25 10 cnlnadjlem7 A norm z ι f | v T v ih z = v ih f A norm op T norm A
27 14 26 eqbrtrd A norm adj h T A norm op T norm A