Metamath Proof Explorer


Theorem nmopcoadj0i

Description: An operator composed with its adjoint is zero iff the operator is zero. Theorem 3.11(vii) of Beran p. 106. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypothesis nmopcoadj.1 T BndLinOp
Assertion nmopcoadj0i T adj h T = 0 hop T = 0 hop

Proof

Step Hyp Ref Expression
1 nmopcoadj.1 T BndLinOp
2 1 nmopcoadj2i norm op T adj h T = norm op T 2
3 2 eqeq1i norm op T adj h T = 0 norm op T 2 = 0
4 nmopre T BndLinOp norm op T
5 1 4 ax-mp norm op T
6 5 recni norm op T
7 6 sqeq0i norm op T 2 = 0 norm op T = 0
8 3 7 bitri norm op T adj h T = 0 norm op T = 0
9 bdopln T BndLinOp T LinOp
10 1 9 ax-mp T LinOp
11 adjbdln T BndLinOp adj h T BndLinOp
12 1 11 ax-mp adj h T BndLinOp
13 bdopln adj h T BndLinOp adj h T LinOp
14 12 13 ax-mp adj h T LinOp
15 10 14 lnopcoi T adj h T LinOp
16 15 nmlnop0iHIL norm op T adj h T = 0 T adj h T = 0 hop
17 10 nmlnop0iHIL norm op T = 0 T = 0 hop
18 8 16 17 3bitr3i T adj h T = 0 hop T = 0 hop