Metamath Proof Explorer


Theorem nmopcoadj2i

Description: The norm of an operator composed with its adjoint. Part of Theorem 3.11(vi) of Beran p. 106. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypothesis nmopcoadj.1 T BndLinOp
Assertion nmopcoadj2i norm op T adj h T = norm op T 2

Proof

Step Hyp Ref Expression
1 nmopcoadj.1 T BndLinOp
2 adjbdln T BndLinOp adj h T BndLinOp
3 1 2 ax-mp adj h T BndLinOp
4 3 nmopcoadji norm op adj h adj h T adj h T = norm op adj h T 2
5 bdopadj T BndLinOp T dom adj h
6 1 5 ax-mp T dom adj h
7 adjadj T dom adj h adj h adj h T = T
8 6 7 ax-mp adj h adj h T = T
9 8 coeq1i adj h adj h T adj h T = T adj h T
10 9 fveq2i norm op adj h adj h T adj h T = norm op T adj h T
11 1 nmopadji norm op adj h T = norm op T
12 11 oveq1i norm op adj h T 2 = norm op T 2
13 4 10 12 3eqtr3i norm op T adj h T = norm op T 2