Metamath Proof Explorer


Theorem nmopge0

Description: The norm of any Hilbert space operator is nonnegative. (Contributed by NM, 9-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmopge0 T : 0 norm op T

Proof

Step Hyp Ref Expression
1 ax-hv0cl 0
2 ffvelrn T : 0 T 0
3 1 2 mpan2 T : T 0
4 normge0 T 0 0 norm T 0
5 3 4 syl T : 0 norm T 0
6 norm0 norm 0 = 0
7 0le1 0 1
8 6 7 eqbrtri norm 0 1
9 nmoplb T : 0 norm 0 1 norm T 0 norm op T
10 1 8 9 mp3an23 T : norm T 0 norm op T
11 normcl T 0 norm T 0
12 3 11 syl T : norm T 0
13 12 rexrd T : norm T 0 *
14 nmopxr T : norm op T *
15 0xr 0 *
16 xrletr 0 * norm T 0 * norm op T * 0 norm T 0 norm T 0 norm op T 0 norm op T
17 15 16 mp3an1 norm T 0 * norm op T * 0 norm T 0 norm T 0 norm op T 0 norm op T
18 13 14 17 syl2anc T : 0 norm T 0 norm T 0 norm op T 0 norm op T
19 5 10 18 mp2and T : 0 norm op T