Step |
Hyp |
Ref |
Expression |
1 |
|
nmophm.1 |
|
2 |
|
bdopf |
|
3 |
1 2
|
ax-mp |
|
4 |
|
homval |
|
5 |
3 4
|
mp3an2 |
|
6 |
5
|
fveq2d |
|
7 |
3
|
ffvelrni |
|
8 |
|
norm-iii |
|
9 |
7 8
|
sylan2 |
|
10 |
6 9
|
eqtrd |
|
11 |
10
|
adantr |
|
12 |
|
normcl |
|
13 |
7 12
|
syl |
|
14 |
13
|
ad2antlr |
|
15 |
|
abscl |
|
16 |
|
absge0 |
|
17 |
15 16
|
jca |
|
18 |
17
|
ad2antrr |
|
19 |
|
nmoplb |
|
20 |
3 19
|
mp3an1 |
|
21 |
20
|
adantll |
|
22 |
|
nmopre |
|
23 |
1 22
|
ax-mp |
|
24 |
|
lemul2a |
|
25 |
23 24
|
mp3anl2 |
|
26 |
14 18 21 25
|
syl21anc |
|
27 |
11 26
|
eqbrtrd |
|
28 |
27
|
ex |
|
29 |
28
|
ralrimiva |
|
30 |
|
homulcl |
|
31 |
3 30
|
mpan2 |
|
32 |
|
remulcl |
|
33 |
15 23 32
|
sylancl |
|
34 |
33
|
rexrd |
|
35 |
|
nmopub |
|
36 |
31 34 35
|
syl2anc |
|
37 |
29 36
|
mpbird |
|
38 |
|
fveq2 |
|
39 |
|
abs0 |
|
40 |
38 39
|
eqtrdi |
|
41 |
40
|
oveq1d |
|
42 |
23
|
recni |
|
43 |
42
|
mul02i |
|
44 |
41 43
|
eqtrdi |
|
45 |
44
|
adantl |
|
46 |
|
nmopge0 |
|
47 |
31 46
|
syl |
|
48 |
47
|
adantr |
|
49 |
45 48
|
eqbrtrd |
|
50 |
|
nmoplb |
|
51 |
31 50
|
syl3an1 |
|
52 |
51
|
3expa |
|
53 |
11 52
|
eqbrtrrd |
|
54 |
53
|
adantllr |
|
55 |
13
|
adantl |
|
56 |
|
nmopxr |
|
57 |
31 56
|
syl |
|
58 |
|
nmopgtmnf |
|
59 |
31 58
|
syl |
|
60 |
|
xrre |
|
61 |
57 33 59 37 60
|
syl22anc |
|
62 |
61
|
ad2antrr |
|
63 |
15
|
ad2antrr |
|
64 |
|
absgt0 |
|
65 |
64
|
biimpa |
|
66 |
65
|
adantr |
|
67 |
|
lemuldiv2 |
|
68 |
55 62 63 66 67
|
syl112anc |
|
69 |
68
|
adantr |
|
70 |
54 69
|
mpbid |
|
71 |
70
|
ex |
|
72 |
71
|
ralrimiva |
|
73 |
61
|
adantr |
|
74 |
15
|
adantr |
|
75 |
|
abs00 |
|
76 |
75
|
necon3bid |
|
77 |
76
|
biimpar |
|
78 |
73 74 77
|
redivcld |
|
79 |
78
|
rexrd |
|
80 |
|
nmopub |
|
81 |
3 79 80
|
sylancr |
|
82 |
72 81
|
mpbird |
|
83 |
23
|
a1i |
|
84 |
|
lemuldiv2 |
|
85 |
83 73 74 65 84
|
syl112anc |
|
86 |
82 85
|
mpbird |
|
87 |
49 86
|
pm2.61dane |
|
88 |
61 33
|
letri3d |
|
89 |
37 87 88
|
mpbir2and |
|