Metamath Proof Explorer


Theorem nmopre

Description: The norm of a bounded operator is a real number. (Contributed by NM, 29-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion nmopre T BndLinOp norm op T

Proof

Step Hyp Ref Expression
1 bdopf T BndLinOp T :
2 nmopgtmnf T : −∞ < norm op T
3 1 2 syl T BndLinOp −∞ < norm op T
4 elbdop T BndLinOp T LinOp norm op T < +∞
5 4 simprbi T BndLinOp norm op T < +∞
6 nmopxr T : norm op T *
7 xrrebnd norm op T * norm op T −∞ < norm op T norm op T < +∞
8 1 6 7 3syl T BndLinOp norm op T −∞ < norm op T norm op T < +∞
9 3 5 8 mpbir2and T BndLinOp norm op T