Metamath Proof Explorer


Theorem nmopreltpnf

Description: The norm of a Hilbert space operator is real iff it is less than infinity. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmopreltpnf T : norm op T norm op T < +∞

Proof

Step Hyp Ref Expression
1 nmoprepnf T : norm op T norm op T +∞
2 nmopxr T : norm op T *
3 nltpnft norm op T * norm op T = +∞ ¬ norm op T < +∞
4 2 3 syl T : norm op T = +∞ ¬ norm op T < +∞
5 4 necon2abid T : norm op T < +∞ norm op T +∞
6 1 5 bitr4d T : norm op T norm op T < +∞