Metamath Proof Explorer


Theorem nmopsetn0

Description: The set in the supremum of the operator norm definition df-nmop is nonempty. (Contributed by NM, 9-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmopsetn0 norm T 0 x | y norm y 1 x = norm T y

Proof

Step Hyp Ref Expression
1 ax-hv0cl 0
2 norm0 norm 0 = 0
3 0le1 0 1
4 2 3 eqbrtri norm 0 1
5 eqid norm T 0 = norm T 0
6 4 5 pm3.2i norm 0 1 norm T 0 = norm T 0
7 fveq2 y = 0 norm y = norm 0
8 7 breq1d y = 0 norm y 1 norm 0 1
9 2fveq3 y = 0 norm T y = norm T 0
10 9 eqeq2d y = 0 norm T 0 = norm T y norm T 0 = norm T 0
11 8 10 anbi12d y = 0 norm y 1 norm T 0 = norm T y norm 0 1 norm T 0 = norm T 0
12 11 rspcev 0 norm 0 1 norm T 0 = norm T 0 y norm y 1 norm T 0 = norm T y
13 1 6 12 mp2an y norm y 1 norm T 0 = norm T y
14 fvex norm T 0 V
15 eqeq1 x = norm T 0 x = norm T y norm T 0 = norm T y
16 15 anbi2d x = norm T 0 norm y 1 x = norm T y norm y 1 norm T 0 = norm T y
17 16 rexbidv x = norm T 0 y norm y 1 x = norm T y y norm y 1 norm T 0 = norm T y
18 14 17 elab norm T 0 x | y norm y 1 x = norm T y y norm y 1 norm T 0 = norm T y
19 13 18 mpbir norm T 0 x | y norm y 1 x = norm T y