Metamath Proof Explorer


Theorem nmopsetretALT

Description: The set in the supremum of the operator norm definition df-nmop is a set of reals. (Contributed by NM, 2-Feb-2006) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion nmopsetretALT T : x | y norm y 1 x = norm T y

Proof

Step Hyp Ref Expression
1 ffvelrn T : y T y
2 normcl T y norm T y
3 1 2 syl T : y norm T y
4 eleq1 x = norm T y x norm T y
5 3 4 syl5ibr x = norm T y T : y x
6 5 impcom T : y x = norm T y x
7 6 adantrl T : y norm y 1 x = norm T y x
8 7 exp31 T : y norm y 1 x = norm T y x
9 8 rexlimdv T : y norm y 1 x = norm T y x
10 9 abssdv T : x | y norm y 1 x = norm T y