Metamath Proof Explorer


Theorem nmopsetretHIL

Description: The set in the supremum of the operator norm definition df-nmop is a set of reals. (Contributed by NM, 2-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmopsetretHIL T : x | y norm y 1 x = norm T y

Proof

Step Hyp Ref Expression
1 eqid + norm = + norm
2 1 hhnv + norm NrmCVec
3 df-hba = BaseSet + norm
4 1 hhnm norm = norm CV + norm
5 3 4 nmosetre + norm NrmCVec T : x | y norm y 1 x = norm T y
6 2 5 mpan T : x | y norm y 1 x = norm T y