Metamath Proof Explorer


Theorem nmopub2tALT

Description: An upper bound for an operator norm. (Contributed by NM, 12-Apr-2006) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion nmopub2tALT T : A 0 A x norm T x A norm x norm op T A

Proof

Step Hyp Ref Expression
1 normcl x norm x
2 1 ad2antlr T : A 0 A x norm x 1 norm x
3 simpllr T : A 0 A x norm x 1 A 0 A
4 simpr T : A 0 A x norm x 1 norm x 1
5 1re 1
6 lemul2a norm x 1 A 0 A norm x 1 A norm x A 1
7 5 6 mp3anl2 norm x A 0 A norm x 1 A norm x A 1
8 2 3 4 7 syl21anc T : A 0 A x norm x 1 A norm x A 1
9 ax-1rid A A 1 = A
10 9 ad2antrl T : A 0 A A 1 = A
11 10 ad2antrr T : A 0 A x norm x 1 A 1 = A
12 8 11 breqtrd T : A 0 A x norm x 1 A norm x A
13 ffvelrn T : x T x
14 normcl T x norm T x
15 13 14 syl T : x norm T x
16 15 adantlr T : A 0 A x norm T x
17 remulcl A norm x A norm x
18 1 17 sylan2 A x A norm x
19 18 adantlr A 0 A x A norm x
20 19 adantll T : A 0 A x A norm x
21 simplrl T : A 0 A x A
22 letr norm T x A norm x A norm T x A norm x A norm x A norm T x A
23 16 20 21 22 syl3anc T : A 0 A x norm T x A norm x A norm x A norm T x A
24 23 adantr T : A 0 A x norm x 1 norm T x A norm x A norm x A norm T x A
25 12 24 mpan2d T : A 0 A x norm x 1 norm T x A norm x norm T x A
26 25 ex T : A 0 A x norm x 1 norm T x A norm x norm T x A
27 26 com23 T : A 0 A x norm T x A norm x norm x 1 norm T x A
28 27 ralimdva T : A 0 A x norm T x A norm x x norm x 1 norm T x A
29 28 imp T : A 0 A x norm T x A norm x x norm x 1 norm T x A
30 rexr A A *
31 30 adantr A 0 A A *
32 nmopub T : A * norm op T A x norm x 1 norm T x A
33 31 32 sylan2 T : A 0 A norm op T A x norm x 1 norm T x A
34 33 biimpar T : A 0 A x norm x 1 norm T x A norm op T A
35 29 34 syldan T : A 0 A x norm T x A norm x norm op T A
36 35 3impa T : A 0 A x norm T x A norm x norm op T A