Metamath Proof Explorer


Theorem nmopub2tHIL

Description: An upper bound for an operator norm. (Contributed by NM, 13-Dec-2007) (New usage is discouraged.)

Ref Expression
Assertion nmopub2tHIL T : A 0 A x norm T x A norm x norm op T A

Proof

Step Hyp Ref Expression
1 df-hba = BaseSet + norm
2 eqid + norm = + norm
3 2 hhnm norm = norm CV + norm
4 eqid + norm normOp OLD + norm = + norm normOp OLD + norm
5 2 4 hhnmoi norm op = + norm normOp OLD + norm
6 2 hhnv + norm NrmCVec
7 1 1 3 3 5 6 6 nmoub2i T : A 0 A x norm T x A norm x norm op T A