Step |
Hyp |
Ref |
Expression |
1 |
|
unoplin |
|
2 |
|
lnopf |
|
3 |
1 2
|
syl |
|
4 |
|
nmopval |
|
5 |
3 4
|
syl |
|
6 |
5
|
adantl |
|
7 |
|
nmopsetretHIL |
|
8 |
|
ressxr |
|
9 |
7 8
|
sstrdi |
|
10 |
3 9
|
syl |
|
11 |
10
|
adantl |
|
12 |
|
1xr |
|
13 |
11 12
|
jctir |
|
14 |
|
vex |
|
15 |
|
eqeq1 |
|
16 |
15
|
anbi2d |
|
17 |
16
|
rexbidv |
|
18 |
14 17
|
elab |
|
19 |
|
unopnorm |
|
20 |
19
|
eqeq2d |
|
21 |
20
|
anbi2d |
|
22 |
|
breq1 |
|
23 |
22
|
biimparc |
|
24 |
21 23
|
syl6bi |
|
25 |
24
|
rexlimdva |
|
26 |
25
|
imp |
|
27 |
18 26
|
sylan2b |
|
28 |
27
|
ralrimiva |
|
29 |
28
|
adantl |
|
30 |
|
hne0 |
|
31 |
|
norm1hex |
|
32 |
30 31
|
sylbb |
|
33 |
32
|
adantr |
|
34 |
|
1le1 |
|
35 |
|
breq1 |
|
36 |
34 35
|
mpbiri |
|
37 |
36
|
a1i |
|
38 |
19
|
adantr |
|
39 |
|
eqeq2 |
|
40 |
39
|
adantl |
|
41 |
38 40
|
mpbid |
|
42 |
41
|
eqcomd |
|
43 |
42
|
ex |
|
44 |
37 43
|
jcad |
|
45 |
44
|
adantll |
|
46 |
45
|
reximdva |
|
47 |
33 46
|
mpd |
|
48 |
|
1ex |
|
49 |
|
eqeq1 |
|
50 |
49
|
anbi2d |
|
51 |
50
|
rexbidv |
|
52 |
48 51
|
elab |
|
53 |
47 52
|
sylibr |
|
54 |
53
|
adantr |
|
55 |
|
breq2 |
|
56 |
55
|
rspcev |
|
57 |
54 56
|
sylan |
|
58 |
57
|
ex |
|
59 |
58
|
ralrimiva |
|
60 |
|
supxr2 |
|
61 |
13 29 59 60
|
syl12anc |
|
62 |
6 61
|
eqtrd |
|