Metamath Proof Explorer


Theorem nmopxr

Description: The norm of a Hilbert space operator is an extended real. (Contributed by NM, 9-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmopxr T : norm op T *

Proof

Step Hyp Ref Expression
1 nmopval T : norm op T = sup x | y norm y 1 x = norm T y * <
2 nmopsetretHIL T : x | y norm y 1 x = norm T y
3 ressxr *
4 2 3 sstrdi T : x | y norm y 1 x = norm T y *
5 supxrcl x | y norm y 1 x = norm T y * sup x | y norm y 1 x = norm T y * < *
6 4 5 syl T : sup x | y norm y 1 x = norm T y * < *
7 1 6 eqeltrd T : norm op T *