Metamath Proof Explorer


Theorem nmoreltpnf

Description: The norm of any operator is real iff it is less than plus infinity. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmoxr.1 X = BaseSet U
nmoxr.2 Y = BaseSet W
nmoxr.3 N = U normOp OLD W
Assertion nmoreltpnf U NrmCVec W NrmCVec T : X Y N T N T < +∞

Proof

Step Hyp Ref Expression
1 nmoxr.1 X = BaseSet U
2 nmoxr.2 Y = BaseSet W
3 nmoxr.3 N = U normOp OLD W
4 1 2 3 nmorepnf U NrmCVec W NrmCVec T : X Y N T N T +∞
5 1 2 3 nmoxr U NrmCVec W NrmCVec T : X Y N T *
6 nltpnft N T * N T = +∞ ¬ N T < +∞
7 5 6 syl U NrmCVec W NrmCVec T : X Y N T = +∞ ¬ N T < +∞
8 7 necon2abid U NrmCVec W NrmCVec T : X Y N T < +∞ N T +∞
9 4 8 bitr4d U NrmCVec W NrmCVec T : X Y N T N T < +∞