Metamath Proof Explorer


Theorem nmorepnf

Description: The norm of an operator is either real or plus infinity. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmoxr.1 X = BaseSet U
nmoxr.2 Y = BaseSet W
nmoxr.3 N = U normOp OLD W
Assertion nmorepnf U NrmCVec W NrmCVec T : X Y N T N T +∞

Proof

Step Hyp Ref Expression
1 nmoxr.1 X = BaseSet U
2 nmoxr.2 Y = BaseSet W
3 nmoxr.3 N = U normOp OLD W
4 eqid norm CV W = norm CV W
5 2 4 nmosetre W NrmCVec T : X Y x | z X norm CV U z 1 x = norm CV W T z
6 eqid 0 vec U = 0 vec U
7 eqid norm CV U = norm CV U
8 1 6 7 nmosetn0 U NrmCVec norm CV W T 0 vec U x | z X norm CV U z 1 x = norm CV W T z
9 8 ne0d U NrmCVec x | z X norm CV U z 1 x = norm CV W T z
10 supxrre2 x | z X norm CV U z 1 x = norm CV W T z x | z X norm CV U z 1 x = norm CV W T z sup x | z X norm CV U z 1 x = norm CV W T z * < sup x | z X norm CV U z 1 x = norm CV W T z * < +∞
11 5 9 10 syl2anr U NrmCVec W NrmCVec T : X Y sup x | z X norm CV U z 1 x = norm CV W T z * < sup x | z X norm CV U z 1 x = norm CV W T z * < +∞
12 11 3impb U NrmCVec W NrmCVec T : X Y sup x | z X norm CV U z 1 x = norm CV W T z * < sup x | z X norm CV U z 1 x = norm CV W T z * < +∞
13 1 2 7 4 3 nmooval U NrmCVec W NrmCVec T : X Y N T = sup x | z X norm CV U z 1 x = norm CV W T z * <
14 13 eleq1d U NrmCVec W NrmCVec T : X Y N T sup x | z X norm CV U z 1 x = norm CV W T z * <
15 13 neeq1d U NrmCVec W NrmCVec T : X Y N T +∞ sup x | z X norm CV U z 1 x = norm CV W T z * < +∞
16 12 14 15 3bitr4d U NrmCVec W NrmCVec T : X Y N T N T +∞