Metamath Proof Explorer


Theorem nmosetn0

Description: The set in the supremum of the operator norm definition df-nmoo is nonempty. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmosetn0.1 X = BaseSet U
nmosetn0.5 Z = 0 vec U
nmosetn0.4 M = norm CV U
Assertion nmosetn0 U NrmCVec N T Z x | y X M y 1 x = N T y

Proof

Step Hyp Ref Expression
1 nmosetn0.1 X = BaseSet U
2 nmosetn0.5 Z = 0 vec U
3 nmosetn0.4 M = norm CV U
4 1 2 nvzcl U NrmCVec Z X
5 2 3 nvz0 U NrmCVec M Z = 0
6 0le1 0 1
7 5 6 eqbrtrdi U NrmCVec M Z 1
8 eqid N T Z = N T Z
9 7 8 jctir U NrmCVec M Z 1 N T Z = N T Z
10 fveq2 y = Z M y = M Z
11 10 breq1d y = Z M y 1 M Z 1
12 2fveq3 y = Z N T y = N T Z
13 12 eqeq2d y = Z N T Z = N T y N T Z = N T Z
14 11 13 anbi12d y = Z M y 1 N T Z = N T y M Z 1 N T Z = N T Z
15 14 rspcev Z X M Z 1 N T Z = N T Z y X M y 1 N T Z = N T y
16 4 9 15 syl2anc U NrmCVec y X M y 1 N T Z = N T y
17 fvex N T Z V
18 eqeq1 x = N T Z x = N T y N T Z = N T y
19 18 anbi2d x = N T Z M y 1 x = N T y M y 1 N T Z = N T y
20 19 rexbidv x = N T Z y X M y 1 x = N T y y X M y 1 N T Z = N T y
21 17 20 elab N T Z x | y X M y 1 x = N T y y X M y 1 N T Z = N T y
22 16 21 sylibr U NrmCVec N T Z x | y X M y 1 x = N T y