Metamath Proof Explorer


Theorem nmosetre

Description: The set in the supremum of the operator norm definition df-nmoo is a set of reals. (Contributed by NM, 13-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmosetre.2 Y = BaseSet W
nmosetre.4 N = norm CV W
Assertion nmosetre W NrmCVec T : X Y x | z X M z 1 x = N T z

Proof

Step Hyp Ref Expression
1 nmosetre.2 Y = BaseSet W
2 nmosetre.4 N = norm CV W
3 ffvelrn T : X Y z X T z Y
4 1 2 nvcl W NrmCVec T z Y N T z
5 3 4 sylan2 W NrmCVec T : X Y z X N T z
6 5 anassrs W NrmCVec T : X Y z X N T z
7 eleq1 x = N T z x N T z
8 6 7 syl5ibr x = N T z W NrmCVec T : X Y z X x
9 8 impcom W NrmCVec T : X Y z X x = N T z x
10 9 adantrl W NrmCVec T : X Y z X M z 1 x = N T z x
11 10 rexlimdva2 W NrmCVec T : X Y z X M z 1 x = N T z x
12 11 abssdv W NrmCVec T : X Y x | z X M z 1 x = N T z