Step |
Hyp |
Ref |
Expression |
1 |
|
nmotri.1 |
|
2 |
|
nmotri.p |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
nghmrcl1 |
|
8 |
7
|
3ad2ant2 |
|
9 |
|
nghmrcl2 |
|
10 |
9
|
3ad2ant2 |
|
11 |
|
id |
|
12 |
|
nghmghm |
|
13 |
|
nghmghm |
|
14 |
2
|
ghmplusg |
|
15 |
11 12 13 14
|
syl3an |
|
16 |
1
|
nghmcl |
|
17 |
16
|
3ad2ant2 |
|
18 |
1
|
nghmcl |
|
19 |
18
|
3ad2ant3 |
|
20 |
17 19
|
readdcld |
|
21 |
12
|
3ad2ant2 |
|
22 |
1
|
nmoge0 |
|
23 |
8 10 21 22
|
syl3anc |
|
24 |
13
|
3ad2ant3 |
|
25 |
1
|
nmoge0 |
|
26 |
8 10 24 25
|
syl3anc |
|
27 |
17 19 23 26
|
addge0d |
|
28 |
10
|
adantr |
|
29 |
|
ngpgrp |
|
30 |
28 29
|
syl |
|
31 |
21
|
adantr |
|
32 |
|
eqid |
|
33 |
3 32
|
ghmf |
|
34 |
31 33
|
syl |
|
35 |
|
simprl |
|
36 |
34 35
|
ffvelrnd |
|
37 |
24
|
adantr |
|
38 |
3 32
|
ghmf |
|
39 |
37 38
|
syl |
|
40 |
39 35
|
ffvelrnd |
|
41 |
32 2
|
grpcl |
|
42 |
30 36 40 41
|
syl3anc |
|
43 |
32 5
|
nmcl |
|
44 |
28 42 43
|
syl2anc |
|
45 |
32 5
|
nmcl |
|
46 |
28 36 45
|
syl2anc |
|
47 |
32 5
|
nmcl |
|
48 |
28 40 47
|
syl2anc |
|
49 |
46 48
|
readdcld |
|
50 |
17
|
adantr |
|
51 |
|
simpl |
|
52 |
3 4
|
nmcl |
|
53 |
8 51 52
|
syl2an |
|
54 |
50 53
|
remulcld |
|
55 |
19
|
adantr |
|
56 |
55 53
|
remulcld |
|
57 |
54 56
|
readdcld |
|
58 |
32 5 2
|
nmtri |
|
59 |
28 36 40 58
|
syl3anc |
|
60 |
|
simpl2 |
|
61 |
1 3 4 5
|
nmoi |
|
62 |
60 35 61
|
syl2anc |
|
63 |
|
simpl3 |
|
64 |
1 3 4 5
|
nmoi |
|
65 |
63 35 64
|
syl2anc |
|
66 |
46 48 54 56 62 65
|
le2addd |
|
67 |
44 49 57 59 66
|
letrd |
|
68 |
34
|
ffnd |
|
69 |
39
|
ffnd |
|
70 |
|
fvexd |
|
71 |
|
fnfvof |
|
72 |
68 69 70 35 71
|
syl22anc |
|
73 |
72
|
fveq2d |
|
74 |
50
|
recnd |
|
75 |
55
|
recnd |
|
76 |
53
|
recnd |
|
77 |
74 75 76
|
adddird |
|
78 |
67 73 77
|
3brtr4d |
|
79 |
1 3 4 5 6 8 10 15 20 27 78
|
nmolb2d |
|