Metamath Proof Explorer


Theorem nmotri

Description: Triangle inequality for the operator norm. (Contributed by Mario Carneiro, 20-Oct-2015)

Ref Expression
Hypotheses nmotri.1 N = S normOp T
nmotri.p + ˙ = + T
Assertion nmotri T Abel F S NGHom T G S NGHom T N F + ˙ f G N F + N G

Proof

Step Hyp Ref Expression
1 nmotri.1 N = S normOp T
2 nmotri.p + ˙ = + T
3 eqid Base S = Base S
4 eqid norm S = norm S
5 eqid norm T = norm T
6 eqid 0 S = 0 S
7 nghmrcl1 F S NGHom T S NrmGrp
8 7 3ad2ant2 T Abel F S NGHom T G S NGHom T S NrmGrp
9 nghmrcl2 F S NGHom T T NrmGrp
10 9 3ad2ant2 T Abel F S NGHom T G S NGHom T T NrmGrp
11 id T Abel T Abel
12 nghmghm F S NGHom T F S GrpHom T
13 nghmghm G S NGHom T G S GrpHom T
14 2 ghmplusg T Abel F S GrpHom T G S GrpHom T F + ˙ f G S GrpHom T
15 11 12 13 14 syl3an T Abel F S NGHom T G S NGHom T F + ˙ f G S GrpHom T
16 1 nghmcl F S NGHom T N F
17 16 3ad2ant2 T Abel F S NGHom T G S NGHom T N F
18 1 nghmcl G S NGHom T N G
19 18 3ad2ant3 T Abel F S NGHom T G S NGHom T N G
20 17 19 readdcld T Abel F S NGHom T G S NGHom T N F + N G
21 12 3ad2ant2 T Abel F S NGHom T G S NGHom T F S GrpHom T
22 1 nmoge0 S NrmGrp T NrmGrp F S GrpHom T 0 N F
23 8 10 21 22 syl3anc T Abel F S NGHom T G S NGHom T 0 N F
24 13 3ad2ant3 T Abel F S NGHom T G S NGHom T G S GrpHom T
25 1 nmoge0 S NrmGrp T NrmGrp G S GrpHom T 0 N G
26 8 10 24 25 syl3anc T Abel F S NGHom T G S NGHom T 0 N G
27 17 19 23 26 addge0d T Abel F S NGHom T G S NGHom T 0 N F + N G
28 10 adantr T Abel F S NGHom T G S NGHom T x Base S x 0 S T NrmGrp
29 ngpgrp T NrmGrp T Grp
30 28 29 syl T Abel F S NGHom T G S NGHom T x Base S x 0 S T Grp
31 21 adantr T Abel F S NGHom T G S NGHom T x Base S x 0 S F S GrpHom T
32 eqid Base T = Base T
33 3 32 ghmf F S GrpHom T F : Base S Base T
34 31 33 syl T Abel F S NGHom T G S NGHom T x Base S x 0 S F : Base S Base T
35 simprl T Abel F S NGHom T G S NGHom T x Base S x 0 S x Base S
36 34 35 ffvelrnd T Abel F S NGHom T G S NGHom T x Base S x 0 S F x Base T
37 24 adantr T Abel F S NGHom T G S NGHom T x Base S x 0 S G S GrpHom T
38 3 32 ghmf G S GrpHom T G : Base S Base T
39 37 38 syl T Abel F S NGHom T G S NGHom T x Base S x 0 S G : Base S Base T
40 39 35 ffvelrnd T Abel F S NGHom T G S NGHom T x Base S x 0 S G x Base T
41 32 2 grpcl T Grp F x Base T G x Base T F x + ˙ G x Base T
42 30 36 40 41 syl3anc T Abel F S NGHom T G S NGHom T x Base S x 0 S F x + ˙ G x Base T
43 32 5 nmcl T NrmGrp F x + ˙ G x Base T norm T F x + ˙ G x
44 28 42 43 syl2anc T Abel F S NGHom T G S NGHom T x Base S x 0 S norm T F x + ˙ G x
45 32 5 nmcl T NrmGrp F x Base T norm T F x
46 28 36 45 syl2anc T Abel F S NGHom T G S NGHom T x Base S x 0 S norm T F x
47 32 5 nmcl T NrmGrp G x Base T norm T G x
48 28 40 47 syl2anc T Abel F S NGHom T G S NGHom T x Base S x 0 S norm T G x
49 46 48 readdcld T Abel F S NGHom T G S NGHom T x Base S x 0 S norm T F x + norm T G x
50 17 adantr T Abel F S NGHom T G S NGHom T x Base S x 0 S N F
51 simpl x Base S x 0 S x Base S
52 3 4 nmcl S NrmGrp x Base S norm S x
53 8 51 52 syl2an T Abel F S NGHom T G S NGHom T x Base S x 0 S norm S x
54 50 53 remulcld T Abel F S NGHom T G S NGHom T x Base S x 0 S N F norm S x
55 19 adantr T Abel F S NGHom T G S NGHom T x Base S x 0 S N G
56 55 53 remulcld T Abel F S NGHom T G S NGHom T x Base S x 0 S N G norm S x
57 54 56 readdcld T Abel F S NGHom T G S NGHom T x Base S x 0 S N F norm S x + N G norm S x
58 32 5 2 nmtri T NrmGrp F x Base T G x Base T norm T F x + ˙ G x norm T F x + norm T G x
59 28 36 40 58 syl3anc T Abel F S NGHom T G S NGHom T x Base S x 0 S norm T F x + ˙ G x norm T F x + norm T G x
60 simpl2 T Abel F S NGHom T G S NGHom T x Base S x 0 S F S NGHom T
61 1 3 4 5 nmoi F S NGHom T x Base S norm T F x N F norm S x
62 60 35 61 syl2anc T Abel F S NGHom T G S NGHom T x Base S x 0 S norm T F x N F norm S x
63 simpl3 T Abel F S NGHom T G S NGHom T x Base S x 0 S G S NGHom T
64 1 3 4 5 nmoi G S NGHom T x Base S norm T G x N G norm S x
65 63 35 64 syl2anc T Abel F S NGHom T G S NGHom T x Base S x 0 S norm T G x N G norm S x
66 46 48 54 56 62 65 le2addd T Abel F S NGHom T G S NGHom T x Base S x 0 S norm T F x + norm T G x N F norm S x + N G norm S x
67 44 49 57 59 66 letrd T Abel F S NGHom T G S NGHom T x Base S x 0 S norm T F x + ˙ G x N F norm S x + N G norm S x
68 34 ffnd T Abel F S NGHom T G S NGHom T x Base S x 0 S F Fn Base S
69 39 ffnd T Abel F S NGHom T G S NGHom T x Base S x 0 S G Fn Base S
70 fvexd T Abel F S NGHom T G S NGHom T x Base S x 0 S Base S V
71 fnfvof F Fn Base S G Fn Base S Base S V x Base S F + ˙ f G x = F x + ˙ G x
72 68 69 70 35 71 syl22anc T Abel F S NGHom T G S NGHom T x Base S x 0 S F + ˙ f G x = F x + ˙ G x
73 72 fveq2d T Abel F S NGHom T G S NGHom T x Base S x 0 S norm T F + ˙ f G x = norm T F x + ˙ G x
74 50 recnd T Abel F S NGHom T G S NGHom T x Base S x 0 S N F
75 55 recnd T Abel F S NGHom T G S NGHom T x Base S x 0 S N G
76 53 recnd T Abel F S NGHom T G S NGHom T x Base S x 0 S norm S x
77 74 75 76 adddird T Abel F S NGHom T G S NGHom T x Base S x 0 S N F + N G norm S x = N F norm S x + N G norm S x
78 67 73 77 3brtr4d T Abel F S NGHom T G S NGHom T x Base S x 0 S norm T F + ˙ f G x N F + N G norm S x
79 1 3 4 5 6 8 10 15 20 27 78 nmolb2d T Abel F S NGHom T G S NGHom T N F + ˙ f G N F + N G