Metamath Proof Explorer


Theorem nmoub2i

Description: An upper bound for an operator norm. (Contributed by NM, 11-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmoubi.1 X = BaseSet U
nmoubi.y Y = BaseSet W
nmoubi.l L = norm CV U
nmoubi.m M = norm CV W
nmoubi.3 N = U normOp OLD W
nmoubi.u U NrmCVec
nmoubi.w W NrmCVec
Assertion nmoub2i T : X Y A 0 A x X M T x A L x N T A

Proof

Step Hyp Ref Expression
1 nmoubi.1 X = BaseSet U
2 nmoubi.y Y = BaseSet W
3 nmoubi.l L = norm CV U
4 nmoubi.m M = norm CV W
5 nmoubi.3 N = U normOp OLD W
6 nmoubi.u U NrmCVec
7 nmoubi.w W NrmCVec
8 1 2 3 4 5 6 7 nmoub3i T : X Y A x X M T x A L x N T A
9 8 3adant2r T : X Y A 0 A x X M T x A L x N T A
10 absid A 0 A A = A
11 10 3ad2ant2 T : X Y A 0 A x X M T x A L x A = A
12 9 11 breqtrd T : X Y A 0 A x X M T x A L x N T A