Metamath Proof Explorer


Theorem nmoub3i

Description: An upper bound for an operator norm. (Contributed by NM, 12-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmoubi.1 X = BaseSet U
nmoubi.y Y = BaseSet W
nmoubi.l L = norm CV U
nmoubi.m M = norm CV W
nmoubi.3 N = U normOp OLD W
nmoubi.u U NrmCVec
nmoubi.w W NrmCVec
Assertion nmoub3i T : X Y A x X M T x A L x N T A

Proof

Step Hyp Ref Expression
1 nmoubi.1 X = BaseSet U
2 nmoubi.y Y = BaseSet W
3 nmoubi.l L = norm CV U
4 nmoubi.m M = norm CV W
5 nmoubi.3 N = U normOp OLD W
6 nmoubi.u U NrmCVec
7 nmoubi.w W NrmCVec
8 1 3 nvcl U NrmCVec x X L x
9 6 8 mpan x X L x
10 remulcl A L x A L x
11 9 10 sylan2 A x X A L x
12 11 adantr A x X L x 1 A L x
13 recn A A
14 13 abscld A A
15 remulcl A L x A L x
16 14 9 15 syl2an A x X A L x
17 16 adantr A x X L x 1 A L x
18 14 ad2antrr A x X L x 1 A
19 simpl A x X A
20 14 adantr A x X A
21 1 3 nvge0 U NrmCVec x X 0 L x
22 6 21 mpan x X 0 L x
23 9 22 jca x X L x 0 L x
24 23 adantl A x X L x 0 L x
25 leabs A A A
26 25 adantr A x X A A
27 lemul1a A A L x 0 L x A A A L x A L x
28 19 20 24 26 27 syl31anc A x X A L x A L x
29 28 adantr A x X L x 1 A L x A L x
30 9 adantl A x X L x
31 1red A x X 1
32 13 absge0d A 0 A
33 32 adantr A x X 0 A
34 20 33 jca A x X A 0 A
35 30 31 34 3jca A x X L x 1 A 0 A
36 lemul2a L x 1 A 0 A L x 1 A L x A 1
37 35 36 sylan A x X L x 1 A L x A 1
38 14 recnd A A
39 38 mulid1d A A 1 = A
40 39 ad2antrr A x X L x 1 A 1 = A
41 37 40 breqtrd A x X L x 1 A L x A
42 12 17 18 29 41 letrd A x X L x 1 A L x A
43 42 adantlll T : X Y A x X L x 1 A L x A
44 ffvelrn T : X Y x X T x Y
45 2 4 nvcl W NrmCVec T x Y M T x
46 7 44 45 sylancr T : X Y x X M T x
47 46 adantlr T : X Y A x X M T x
48 11 adantll T : X Y A x X A L x
49 14 ad2antlr T : X Y A x X A
50 letr M T x A L x A M T x A L x A L x A M T x A
51 47 48 49 50 syl3anc T : X Y A x X M T x A L x A L x A M T x A
52 51 adantr T : X Y A x X L x 1 M T x A L x A L x A M T x A
53 43 52 mpan2d T : X Y A x X L x 1 M T x A L x M T x A
54 53 ex T : X Y A x X L x 1 M T x A L x M T x A
55 54 com23 T : X Y A x X M T x A L x L x 1 M T x A
56 55 ralimdva T : X Y A x X M T x A L x x X L x 1 M T x A
57 56 imp T : X Y A x X M T x A L x x X L x 1 M T x A
58 14 rexrd A A *
59 1 2 3 4 5 6 7 nmoubi T : X Y A * N T A x X L x 1 M T x A
60 58 59 sylan2 T : X Y A N T A x X L x 1 M T x A
61 60 biimpar T : X Y A x X L x 1 M T x A N T A
62 57 61 syldan T : X Y A x X M T x A L x N T A
63 62 3impa T : X Y A x X M T x A L x N T A