Metamath Proof Explorer


Theorem nmoubi

Description: An upper bound for an operator norm. (Contributed by NM, 11-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmoubi.1 X = BaseSet U
nmoubi.y Y = BaseSet W
nmoubi.l L = norm CV U
nmoubi.m M = norm CV W
nmoubi.3 N = U normOp OLD W
nmoubi.u U NrmCVec
nmoubi.w W NrmCVec
Assertion nmoubi T : X Y A * N T A x X L x 1 M T x A

Proof

Step Hyp Ref Expression
1 nmoubi.1 X = BaseSet U
2 nmoubi.y Y = BaseSet W
3 nmoubi.l L = norm CV U
4 nmoubi.m M = norm CV W
5 nmoubi.3 N = U normOp OLD W
6 nmoubi.u U NrmCVec
7 nmoubi.w W NrmCVec
8 1 2 3 4 5 nmooval U NrmCVec W NrmCVec T : X Y N T = sup y | x X L x 1 y = M T x * <
9 6 7 8 mp3an12 T : X Y N T = sup y | x X L x 1 y = M T x * <
10 9 breq1d T : X Y N T A sup y | x X L x 1 y = M T x * < A
11 10 adantr T : X Y A * N T A sup y | x X L x 1 y = M T x * < A
12 2 4 nmosetre W NrmCVec T : X Y y | x X L x 1 y = M T x
13 7 12 mpan T : X Y y | x X L x 1 y = M T x
14 ressxr *
15 13 14 sstrdi T : X Y y | x X L x 1 y = M T x *
16 supxrleub y | x X L x 1 y = M T x * A * sup y | x X L x 1 y = M T x * < A z y | x X L x 1 y = M T x z A
17 15 16 sylan T : X Y A * sup y | x X L x 1 y = M T x * < A z y | x X L x 1 y = M T x z A
18 11 17 bitrd T : X Y A * N T A z y | x X L x 1 y = M T x z A
19 eqeq1 y = z y = M T x z = M T x
20 19 anbi2d y = z L x 1 y = M T x L x 1 z = M T x
21 20 rexbidv y = z x X L x 1 y = M T x x X L x 1 z = M T x
22 21 ralab z y | x X L x 1 y = M T x z A z x X L x 1 z = M T x z A
23 ralcom4 x X z L x 1 z = M T x z A z x X L x 1 z = M T x z A
24 ancomst L x 1 z = M T x z A z = M T x L x 1 z A
25 impexp z = M T x L x 1 z A z = M T x L x 1 z A
26 24 25 bitri L x 1 z = M T x z A z = M T x L x 1 z A
27 26 albii z L x 1 z = M T x z A z z = M T x L x 1 z A
28 fvex M T x V
29 breq1 z = M T x z A M T x A
30 29 imbi2d z = M T x L x 1 z A L x 1 M T x A
31 28 30 ceqsalv z z = M T x L x 1 z A L x 1 M T x A
32 27 31 bitri z L x 1 z = M T x z A L x 1 M T x A
33 32 ralbii x X z L x 1 z = M T x z A x X L x 1 M T x A
34 r19.23v x X L x 1 z = M T x z A x X L x 1 z = M T x z A
35 34 albii z x X L x 1 z = M T x z A z x X L x 1 z = M T x z A
36 23 33 35 3bitr3i x X L x 1 M T x A z x X L x 1 z = M T x z A
37 22 36 bitr4i z y | x X L x 1 y = M T x z A x X L x 1 M T x A
38 18 37 bitrdi T : X Y A * N T A x X L x 1 M T x A