Metamath Proof Explorer


Theorem nmoval

Description: Value of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015) (Revised by AV, 26-Sep-2020)

Ref Expression
Hypotheses nmofval.1 N = S normOp T
nmofval.2 V = Base S
nmofval.3 L = norm S
nmofval.4 M = norm T
Assertion nmoval S NrmGrp T NrmGrp F S GrpHom T N F = sup r 0 +∞ | x V M F x r L x * <

Proof

Step Hyp Ref Expression
1 nmofval.1 N = S normOp T
2 nmofval.2 V = Base S
3 nmofval.3 L = norm S
4 nmofval.4 M = norm T
5 1 2 3 4 nmofval S NrmGrp T NrmGrp N = f S GrpHom T sup r 0 +∞ | x V M f x r L x * <
6 5 fveq1d S NrmGrp T NrmGrp N F = f S GrpHom T sup r 0 +∞ | x V M f x r L x * < F
7 fveq1 f = F f x = F x
8 7 fveq2d f = F M f x = M F x
9 8 breq1d f = F M f x r L x M F x r L x
10 9 ralbidv f = F x V M f x r L x x V M F x r L x
11 10 rabbidv f = F r 0 +∞ | x V M f x r L x = r 0 +∞ | x V M F x r L x
12 11 infeq1d f = F sup r 0 +∞ | x V M f x r L x * < = sup r 0 +∞ | x V M F x r L x * <
13 eqid f S GrpHom T sup r 0 +∞ | x V M f x r L x * < = f S GrpHom T sup r 0 +∞ | x V M f x r L x * <
14 xrltso < Or *
15 14 infex sup r 0 +∞ | x V M F x r L x * < V
16 12 13 15 fvmpt F S GrpHom T f S GrpHom T sup r 0 +∞ | x V M f x r L x * < F = sup r 0 +∞ | x V M F x r L x * <
17 6 16 sylan9eq S NrmGrp T NrmGrp F S GrpHom T N F = sup r 0 +∞ | x V M F x r L x * <
18 17 3impa S NrmGrp T NrmGrp F S GrpHom T N F = sup r 0 +∞ | x V M F x r L x * <