Metamath Proof Explorer


Theorem nmpar

Description: A subcomplex pre-Hilbert space satisfies the parallelogram law. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses nmpar.v V = Base W
nmpar.p + ˙ = + W
nmpar.m - ˙ = - W
nmpar.n N = norm W
Assertion nmpar W CPreHil A V B V N A + ˙ B 2 + N A - ˙ B 2 = 2 N A 2 + N B 2

Proof

Step Hyp Ref Expression
1 nmpar.v V = Base W
2 nmpar.p + ˙ = + W
3 nmpar.m - ˙ = - W
4 nmpar.n N = norm W
5 eqid 𝑖 W = 𝑖 W
6 eqid Scalar W = Scalar W
7 eqid Base Scalar W = Base Scalar W
8 simp1 W CPreHil A V B V W CPreHil
9 simp2 W CPreHil A V B V A V
10 simp3 W CPreHil A V B V B V
11 1 2 3 4 5 6 7 8 9 10 nmparlem W CPreHil A V B V N A + ˙ B 2 + N A - ˙ B 2 = 2 N A 2 + N B 2