Metamath Proof Explorer


Theorem nmparlem

Description: Lemma for nmpar . (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses nmpar.v V = Base W
nmpar.p + ˙ = + W
nmpar.m - ˙ = - W
nmpar.n N = norm W
nmpar.h , ˙ = 𝑖 W
nmpar.f F = Scalar W
nmpar.k K = Base F
nmpar.1 φ W CPreHil
nmpar.2 φ A V
nmpar.3 φ B V
Assertion nmparlem φ N A + ˙ B 2 + N A - ˙ B 2 = 2 N A 2 + N B 2

Proof

Step Hyp Ref Expression
1 nmpar.v V = Base W
2 nmpar.p + ˙ = + W
3 nmpar.m - ˙ = - W
4 nmpar.n N = norm W
5 nmpar.h , ˙ = 𝑖 W
6 nmpar.f F = Scalar W
7 nmpar.k K = Base F
8 nmpar.1 φ W CPreHil
9 nmpar.2 φ A V
10 nmpar.3 φ B V
11 5 1 2 8 9 10 9 10 cph2di φ A + ˙ B , ˙ A + ˙ B = A , ˙ A + B , ˙ B + A , ˙ B + B , ˙ A
12 5 1 3 8 9 10 9 10 cph2subdi φ A - ˙ B , ˙ A - ˙ B = A , ˙ A + B , ˙ B - A , ˙ B + B , ˙ A
13 11 12 oveq12d φ A + ˙ B , ˙ A + ˙ B + A - ˙ B , ˙ A - ˙ B = A , ˙ A + B , ˙ B + A , ˙ B + B , ˙ A + A , ˙ A + B , ˙ B - A , ˙ B + B , ˙ A
14 cphclm W CPreHil W CMod
15 8 14 syl φ W CMod
16 6 7 clmsscn W CMod K
17 15 16 syl φ K
18 cphphl W CPreHil W PreHil
19 8 18 syl φ W PreHil
20 6 5 1 7 ipcl W PreHil A V A V A , ˙ A K
21 19 9 9 20 syl3anc φ A , ˙ A K
22 6 5 1 7 ipcl W PreHil B V B V B , ˙ B K
23 19 10 10 22 syl3anc φ B , ˙ B K
24 6 7 clmacl W CMod A , ˙ A K B , ˙ B K A , ˙ A + B , ˙ B K
25 15 21 23 24 syl3anc φ A , ˙ A + B , ˙ B K
26 17 25 sseldd φ A , ˙ A + B , ˙ B
27 6 5 1 7 ipcl W PreHil A V B V A , ˙ B K
28 19 9 10 27 syl3anc φ A , ˙ B K
29 6 5 1 7 ipcl W PreHil B V A V B , ˙ A K
30 19 10 9 29 syl3anc φ B , ˙ A K
31 6 7 clmacl W CMod A , ˙ B K B , ˙ A K A , ˙ B + B , ˙ A K
32 15 28 30 31 syl3anc φ A , ˙ B + B , ˙ A K
33 17 32 sseldd φ A , ˙ B + B , ˙ A
34 26 33 26 ppncand φ A , ˙ A + B , ˙ B + A , ˙ B + B , ˙ A + A , ˙ A + B , ˙ B - A , ˙ B + B , ˙ A = A , ˙ A + B , ˙ B + A , ˙ A + B , ˙ B
35 13 34 eqtrd φ A + ˙ B , ˙ A + ˙ B + A - ˙ B , ˙ A - ˙ B = A , ˙ A + B , ˙ B + A , ˙ A + B , ˙ B
36 cphlmod W CPreHil W LMod
37 8 36 syl φ W LMod
38 1 2 lmodvacl W LMod A V B V A + ˙ B V
39 37 9 10 38 syl3anc φ A + ˙ B V
40 1 5 4 nmsq W CPreHil A + ˙ B V N A + ˙ B 2 = A + ˙ B , ˙ A + ˙ B
41 8 39 40 syl2anc φ N A + ˙ B 2 = A + ˙ B , ˙ A + ˙ B
42 1 3 lmodvsubcl W LMod A V B V A - ˙ B V
43 37 9 10 42 syl3anc φ A - ˙ B V
44 1 5 4 nmsq W CPreHil A - ˙ B V N A - ˙ B 2 = A - ˙ B , ˙ A - ˙ B
45 8 43 44 syl2anc φ N A - ˙ B 2 = A - ˙ B , ˙ A - ˙ B
46 41 45 oveq12d φ N A + ˙ B 2 + N A - ˙ B 2 = A + ˙ B , ˙ A + ˙ B + A - ˙ B , ˙ A - ˙ B
47 1 5 4 nmsq W CPreHil A V N A 2 = A , ˙ A
48 8 9 47 syl2anc φ N A 2 = A , ˙ A
49 1 5 4 nmsq W CPreHil B V N B 2 = B , ˙ B
50 8 10 49 syl2anc φ N B 2 = B , ˙ B
51 48 50 oveq12d φ N A 2 + N B 2 = A , ˙ A + B , ˙ B
52 51 oveq2d φ 2 N A 2 + N B 2 = 2 A , ˙ A + B , ˙ B
53 26 2timesd φ 2 A , ˙ A + B , ˙ B = A , ˙ A + B , ˙ B + A , ˙ A + B , ˙ B
54 52 53 eqtrd φ 2 N A 2 + N B 2 = A , ˙ A + B , ˙ B + A , ˙ A + B , ˙ B
55 35 46 54 3eqtr4d φ N A + ˙ B 2 + N A - ˙ B 2 = 2 N A 2 + N B 2