Metamath Proof Explorer


Theorem nmpropd

Description: Weak property deduction for a norm. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmpropd.1 φ Base K = Base L
nmpropd.2 φ + K = + L
nmpropd.3 φ dist K = dist L
Assertion nmpropd φ norm K = norm L

Proof

Step Hyp Ref Expression
1 nmpropd.1 φ Base K = Base L
2 nmpropd.2 φ + K = + L
3 nmpropd.3 φ dist K = dist L
4 eqidd φ x = x
5 eqidd φ Base K = Base K
6 2 oveqdr φ x Base K y Base K x + K y = x + L y
7 5 1 6 grpidpropd φ 0 K = 0 L
8 3 4 7 oveq123d φ x dist K 0 K = x dist L 0 L
9 1 8 mpteq12dv φ x Base K x dist K 0 K = x Base L x dist L 0 L
10 eqid norm K = norm K
11 eqid Base K = Base K
12 eqid 0 K = 0 K
13 eqid dist K = dist K
14 10 11 12 13 nmfval norm K = x Base K x dist K 0 K
15 eqid norm L = norm L
16 eqid Base L = Base L
17 eqid 0 L = 0 L
18 eqid dist L = dist L
19 15 16 17 18 nmfval norm L = x Base L x dist L 0 L
20 9 14 19 3eqtr4g φ norm K = norm L