Metamath Proof Explorer


Theorem nmpropd

Description: Weak property deduction for a norm. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmpropd.1 φBaseK=BaseL
nmpropd.2 φ+K=+L
nmpropd.3 φdistK=distL
Assertion nmpropd φnormK=normL

Proof

Step Hyp Ref Expression
1 nmpropd.1 φBaseK=BaseL
2 nmpropd.2 φ+K=+L
3 nmpropd.3 φdistK=distL
4 eqidd φx=x
5 eqidd φBaseK=BaseK
6 2 oveqdr φxBaseKyBaseKx+Ky=x+Ly
7 5 1 6 grpidpropd φ0K=0L
8 3 4 7 oveq123d φxdistK0K=xdistL0L
9 1 8 mpteq12dv φxBaseKxdistK0K=xBaseLxdistL0L
10 eqid normK=normK
11 eqid BaseK=BaseK
12 eqid 0K=0K
13 eqid distK=distK
14 10 11 12 13 nmfval normK=xBaseKxdistK0K
15 eqid normL=normL
16 eqid BaseL=BaseL
17 eqid 0L=0L
18 eqid distL=distL
19 15 16 17 18 nmfval normL=xBaseLxdistL0L
20 9 14 19 3eqtr4g φnormK=normL