Metamath Proof Explorer


Theorem nmrpcl

Description: The norm of a nonzero element is a positive real. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmf.x X = Base G
nmf.n N = norm G
nmeq0.z 0 ˙ = 0 G
Assertion nmrpcl G NrmGrp A X A 0 ˙ N A +

Proof

Step Hyp Ref Expression
1 nmf.x X = Base G
2 nmf.n N = norm G
3 nmeq0.z 0 ˙ = 0 G
4 1 2 nmcl G NrmGrp A X N A
5 4 3adant3 G NrmGrp A X A 0 ˙ N A
6 1 2 nmge0 G NrmGrp A X 0 N A
7 6 3adant3 G NrmGrp A X A 0 ˙ 0 N A
8 1 2 3 nmne0 G NrmGrp A X A 0 ˙ N A 0
9 5 7 8 ne0gt0d G NrmGrp A X A 0 ˙ 0 < N A
10 5 9 elrpd G NrmGrp A X A 0 ˙ N A +