Metamath Proof Explorer


Theorem nmrtri

Description: Reverse triangle inequality for the norm of a subtraction. Problem 3 of Kreyszig p. 64. (Contributed by NM, 4-Dec-2006) (Revised by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmf.x X = Base G
nmf.n N = norm G
nmmtri.m - ˙ = - G
Assertion nmrtri G NrmGrp A X B X N A N B N A - ˙ B

Proof

Step Hyp Ref Expression
1 nmf.x X = Base G
2 nmf.n N = norm G
3 nmmtri.m - ˙ = - G
4 ngpms G NrmGrp G MetSp
5 4 3ad2ant1 G NrmGrp A X B X G MetSp
6 simp2 G NrmGrp A X B X A X
7 simp3 G NrmGrp A X B X B X
8 ngpgrp G NrmGrp G Grp
9 8 3ad2ant1 G NrmGrp A X B X G Grp
10 eqid 0 G = 0 G
11 1 10 grpidcl G Grp 0 G X
12 9 11 syl G NrmGrp A X B X 0 G X
13 eqid dist G = dist G
14 1 13 msrtri G MetSp A X B X 0 G X A dist G 0 G B dist G 0 G A dist G B
15 5 6 7 12 14 syl13anc G NrmGrp A X B X A dist G 0 G B dist G 0 G A dist G B
16 2 1 10 13 nmval A X N A = A dist G 0 G
17 16 3ad2ant2 G NrmGrp A X B X N A = A dist G 0 G
18 2 1 10 13 nmval B X N B = B dist G 0 G
19 18 3ad2ant3 G NrmGrp A X B X N B = B dist G 0 G
20 17 19 oveq12d G NrmGrp A X B X N A N B = A dist G 0 G B dist G 0 G
21 20 fveq2d G NrmGrp A X B X N A N B = A dist G 0 G B dist G 0 G
22 2 1 3 13 ngpds G NrmGrp A X B X A dist G B = N A - ˙ B
23 22 eqcomd G NrmGrp A X B X N A - ˙ B = A dist G B
24 15 21 23 3brtr4d G NrmGrp A X B X N A N B N A - ˙ B