Metamath Proof Explorer


Theorem nmsub

Description: The norm of the difference between two elements. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmf.x X = Base G
nmf.n N = norm G
nmmtri.m - ˙ = - G
Assertion nmsub G NrmGrp A X B X N A - ˙ B = N B - ˙ A

Proof

Step Hyp Ref Expression
1 nmf.x X = Base G
2 nmf.n N = norm G
3 nmmtri.m - ˙ = - G
4 simp1 G NrmGrp A X B X G NrmGrp
5 ngpgrp G NrmGrp G Grp
6 4 5 syl G NrmGrp A X B X G Grp
7 simp3 G NrmGrp A X B X B X
8 simp2 G NrmGrp A X B X A X
9 eqid inv g G = inv g G
10 1 3 9 grpinvsub G Grp B X A X inv g G B - ˙ A = A - ˙ B
11 6 7 8 10 syl3anc G NrmGrp A X B X inv g G B - ˙ A = A - ˙ B
12 11 fveq2d G NrmGrp A X B X N inv g G B - ˙ A = N A - ˙ B
13 1 3 grpsubcl G Grp B X A X B - ˙ A X
14 6 7 8 13 syl3anc G NrmGrp A X B X B - ˙ A X
15 1 2 9 nminv G NrmGrp B - ˙ A X N inv g G B - ˙ A = N B - ˙ A
16 4 14 15 syl2anc G NrmGrp A X B X N inv g G B - ˙ A = N B - ˙ A
17 12 16 eqtr3d G NrmGrp A X B X N A - ˙ B = N B - ˙ A