Metamath Proof Explorer


Theorem nmzbi

Description: Defining property of the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypothesis elnmz.1 N = x X | y X x + ˙ y S y + ˙ x S
Assertion nmzbi A N B X A + ˙ B S B + ˙ A S

Proof

Step Hyp Ref Expression
1 elnmz.1 N = x X | y X x + ˙ y S y + ˙ x S
2 1 elnmz A N A X z X A + ˙ z S z + ˙ A S
3 2 simprbi A N z X A + ˙ z S z + ˙ A S
4 oveq2 z = B A + ˙ z = A + ˙ B
5 4 eleq1d z = B A + ˙ z S A + ˙ B S
6 oveq1 z = B z + ˙ A = B + ˙ A
7 6 eleq1d z = B z + ˙ A S B + ˙ A S
8 5 7 bibi12d z = B A + ˙ z S z + ˙ A S A + ˙ B S B + ˙ A S
9 8 rspccva z X A + ˙ z S z + ˙ A S B X A + ˙ B S B + ˙ A S
10 3 9 sylan A N B X A + ˙ B S B + ˙ A S