Database
BASIC ALGEBRAIC STRUCTURES
Groups
Subgroups and Quotient groups
nmzbi
Next ⟩
nmzsubg
Metamath Proof Explorer
Ascii
Unicode
Theorem
nmzbi
Description:
Defining property of the normalizer.
(Contributed by
Mario Carneiro
, 18-Jan-2015)
Ref
Expression
Hypothesis
elnmz.1
⊢
N
=
x
∈
X
|
∀
y
∈
X
x
+
˙
y
∈
S
↔
y
+
˙
x
∈
S
Assertion
nmzbi
⊢
A
∈
N
∧
B
∈
X
→
A
+
˙
B
∈
S
↔
B
+
˙
A
∈
S
Proof
Step
Hyp
Ref
Expression
1
elnmz.1
⊢
N
=
x
∈
X
|
∀
y
∈
X
x
+
˙
y
∈
S
↔
y
+
˙
x
∈
S
2
1
elnmz
⊢
A
∈
N
↔
A
∈
X
∧
∀
z
∈
X
A
+
˙
z
∈
S
↔
z
+
˙
A
∈
S
3
2
simprbi
⊢
A
∈
N
→
∀
z
∈
X
A
+
˙
z
∈
S
↔
z
+
˙
A
∈
S
4
oveq2
⊢
z
=
B
→
A
+
˙
z
=
A
+
˙
B
5
4
eleq1d
⊢
z
=
B
→
A
+
˙
z
∈
S
↔
A
+
˙
B
∈
S
6
oveq1
⊢
z
=
B
→
z
+
˙
A
=
B
+
˙
A
7
6
eleq1d
⊢
z
=
B
→
z
+
˙
A
∈
S
↔
B
+
˙
A
∈
S
8
5
7
bibi12d
⊢
z
=
B
→
A
+
˙
z
∈
S
↔
z
+
˙
A
∈
S
↔
A
+
˙
B
∈
S
↔
B
+
˙
A
∈
S
9
8
rspccva
⊢
∀
z
∈
X
A
+
˙
z
∈
S
↔
z
+
˙
A
∈
S
∧
B
∈
X
→
A
+
˙
B
∈
S
↔
B
+
˙
A
∈
S
10
3
9
sylan
⊢
A
∈
N
∧
B
∈
X
→
A
+
˙
B
∈
S
↔
B
+
˙
A
∈
S