Metamath Proof Explorer


Theorem nmzsubg

Description: The normalizer N_G(S) of a subset S of the group is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses elnmz.1 N = x X | y X x + ˙ y S y + ˙ x S
nmzsubg.2 X = Base G
nmzsubg.3 + ˙ = + G
Assertion nmzsubg G Grp N SubGrp G

Proof

Step Hyp Ref Expression
1 elnmz.1 N = x X | y X x + ˙ y S y + ˙ x S
2 nmzsubg.2 X = Base G
3 nmzsubg.3 + ˙ = + G
4 1 ssrab3 N X
5 4 a1i G Grp N X
6 eqid 0 G = 0 G
7 2 6 grpidcl G Grp 0 G X
8 2 3 6 grplid G Grp z X 0 G + ˙ z = z
9 2 3 6 grprid G Grp z X z + ˙ 0 G = z
10 8 9 eqtr4d G Grp z X 0 G + ˙ z = z + ˙ 0 G
11 10 eleq1d G Grp z X 0 G + ˙ z S z + ˙ 0 G S
12 11 ralrimiva G Grp z X 0 G + ˙ z S z + ˙ 0 G S
13 1 elnmz 0 G N 0 G X z X 0 G + ˙ z S z + ˙ 0 G S
14 7 12 13 sylanbrc G Grp 0 G N
15 14 ne0d G Grp N
16 id G Grp G Grp
17 4 sseli z N z X
18 4 sseli w N w X
19 2 3 grpcl G Grp z X w X z + ˙ w X
20 16 17 18 19 syl3an G Grp z N w N z + ˙ w X
21 simpl1 G Grp z N w N u X G Grp
22 simpl2 G Grp z N w N u X z N
23 4 22 sselid G Grp z N w N u X z X
24 simpl3 G Grp z N w N u X w N
25 4 24 sselid G Grp z N w N u X w X
26 simpr G Grp z N w N u X u X
27 2 3 grpass G Grp z X w X u X z + ˙ w + ˙ u = z + ˙ w + ˙ u
28 21 23 25 26 27 syl13anc G Grp z N w N u X z + ˙ w + ˙ u = z + ˙ w + ˙ u
29 28 eleq1d G Grp z N w N u X z + ˙ w + ˙ u S z + ˙ w + ˙ u S
30 2 3 21 25 26 grpcld G Grp z N w N u X w + ˙ u X
31 1 nmzbi z N w + ˙ u X z + ˙ w + ˙ u S w + ˙ u + ˙ z S
32 22 30 31 syl2anc G Grp z N w N u X z + ˙ w + ˙ u S w + ˙ u + ˙ z S
33 2 3 grpass G Grp w X u X z X w + ˙ u + ˙ z = w + ˙ u + ˙ z
34 21 25 26 23 33 syl13anc G Grp z N w N u X w + ˙ u + ˙ z = w + ˙ u + ˙ z
35 34 eleq1d G Grp z N w N u X w + ˙ u + ˙ z S w + ˙ u + ˙ z S
36 2 3 21 26 23 grpcld G Grp z N w N u X u + ˙ z X
37 1 nmzbi w N u + ˙ z X w + ˙ u + ˙ z S u + ˙ z + ˙ w S
38 24 36 37 syl2anc G Grp z N w N u X w + ˙ u + ˙ z S u + ˙ z + ˙ w S
39 32 35 38 3bitrd G Grp z N w N u X z + ˙ w + ˙ u S u + ˙ z + ˙ w S
40 2 3 grpass G Grp u X z X w X u + ˙ z + ˙ w = u + ˙ z + ˙ w
41 21 26 23 25 40 syl13anc G Grp z N w N u X u + ˙ z + ˙ w = u + ˙ z + ˙ w
42 41 eleq1d G Grp z N w N u X u + ˙ z + ˙ w S u + ˙ z + ˙ w S
43 29 39 42 3bitrd G Grp z N w N u X z + ˙ w + ˙ u S u + ˙ z + ˙ w S
44 43 ralrimiva G Grp z N w N u X z + ˙ w + ˙ u S u + ˙ z + ˙ w S
45 1 elnmz z + ˙ w N z + ˙ w X u X z + ˙ w + ˙ u S u + ˙ z + ˙ w S
46 20 44 45 sylanbrc G Grp z N w N z + ˙ w N
47 46 3expa G Grp z N w N z + ˙ w N
48 47 ralrimiva G Grp z N w N z + ˙ w N
49 eqid inv g G = inv g G
50 2 49 grpinvcl G Grp z X inv g G z X
51 17 50 sylan2 G Grp z N inv g G z X
52 simplr G Grp z N u X z N
53 simpll G Grp z N u X G Grp
54 51 adantr G Grp z N u X inv g G z X
55 simpr G Grp z N u X u X
56 2 3 53 55 54 grpcld G Grp z N u X u + ˙ inv g G z X
57 2 3 53 54 56 grpcld G Grp z N u X inv g G z + ˙ u + ˙ inv g G z X
58 1 nmzbi z N inv g G z + ˙ u + ˙ inv g G z X z + ˙ inv g G z + ˙ u + ˙ inv g G z S inv g G z + ˙ u + ˙ inv g G z + ˙ z S
59 52 57 58 syl2anc G Grp z N u X z + ˙ inv g G z + ˙ u + ˙ inv g G z S inv g G z + ˙ u + ˙ inv g G z + ˙ z S
60 4 52 sselid G Grp z N u X z X
61 2 3 6 49 grprinv G Grp z X z + ˙ inv g G z = 0 G
62 53 60 61 syl2anc G Grp z N u X z + ˙ inv g G z = 0 G
63 62 oveq1d G Grp z N u X z + ˙ inv g G z + ˙ u + ˙ inv g G z = 0 G + ˙ u + ˙ inv g G z
64 2 3 grpass G Grp z X inv g G z X u + ˙ inv g G z X z + ˙ inv g G z + ˙ u + ˙ inv g G z = z + ˙ inv g G z + ˙ u + ˙ inv g G z
65 53 60 54 56 64 syl13anc G Grp z N u X z + ˙ inv g G z + ˙ u + ˙ inv g G z = z + ˙ inv g G z + ˙ u + ˙ inv g G z
66 2 3 6 grplid G Grp u + ˙ inv g G z X 0 G + ˙ u + ˙ inv g G z = u + ˙ inv g G z
67 53 56 66 syl2anc G Grp z N u X 0 G + ˙ u + ˙ inv g G z = u + ˙ inv g G z
68 63 65 67 3eqtr3d G Grp z N u X z + ˙ inv g G z + ˙ u + ˙ inv g G z = u + ˙ inv g G z
69 68 eleq1d G Grp z N u X z + ˙ inv g G z + ˙ u + ˙ inv g G z S u + ˙ inv g G z S
70 2 3 grpass G Grp inv g G z X u + ˙ inv g G z X z X inv g G z + ˙ u + ˙ inv g G z + ˙ z = inv g G z + ˙ u + ˙ inv g G z + ˙ z
71 53 54 56 60 70 syl13anc G Grp z N u X inv g G z + ˙ u + ˙ inv g G z + ˙ z = inv g G z + ˙ u + ˙ inv g G z + ˙ z
72 2 3 grpass G Grp u X inv g G z X z X u + ˙ inv g G z + ˙ z = u + ˙ inv g G z + ˙ z
73 53 55 54 60 72 syl13anc G Grp z N u X u + ˙ inv g G z + ˙ z = u + ˙ inv g G z + ˙ z
74 2 3 6 49 grplinv G Grp z X inv g G z + ˙ z = 0 G
75 53 60 74 syl2anc G Grp z N u X inv g G z + ˙ z = 0 G
76 75 oveq2d G Grp z N u X u + ˙ inv g G z + ˙ z = u + ˙ 0 G
77 2 3 6 grprid G Grp u X u + ˙ 0 G = u
78 53 55 77 syl2anc G Grp z N u X u + ˙ 0 G = u
79 73 76 78 3eqtrd G Grp z N u X u + ˙ inv g G z + ˙ z = u
80 79 oveq2d G Grp z N u X inv g G z + ˙ u + ˙ inv g G z + ˙ z = inv g G z + ˙ u
81 71 80 eqtrd G Grp z N u X inv g G z + ˙ u + ˙ inv g G z + ˙ z = inv g G z + ˙ u
82 81 eleq1d G Grp z N u X inv g G z + ˙ u + ˙ inv g G z + ˙ z S inv g G z + ˙ u S
83 59 69 82 3bitr3rd G Grp z N u X inv g G z + ˙ u S u + ˙ inv g G z S
84 83 ralrimiva G Grp z N u X inv g G z + ˙ u S u + ˙ inv g G z S
85 1 elnmz inv g G z N inv g G z X u X inv g G z + ˙ u S u + ˙ inv g G z S
86 51 84 85 sylanbrc G Grp z N inv g G z N
87 48 86 jca G Grp z N w N z + ˙ w N inv g G z N
88 87 ralrimiva G Grp z N w N z + ˙ w N inv g G z N
89 2 3 49 issubg2 G Grp N SubGrp G N X N z N w N z + ˙ w N inv g G z N
90 5 15 88 89 mpbir3and G Grp N SubGrp G