Metamath Proof Explorer


Theorem nn01to3

Description: A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018)

Ref Expression
Assertion nn01to3 N 0 1 N N 3 N = 1 N = 2 N = 3

Proof

Step Hyp Ref Expression
1 3mix3 N = 3 N = 1 N = 2 N = 3
2 1 a1d N = 3 N 0 1 N N 3 N = 1 N = 2 N = 3
3 nn0re N 0 N
4 3 3ad2ant1 N 0 1 N N 3 N
5 3re 3
6 5 a1i N 0 1 N N 3 3
7 simp3 N 0 1 N N 3 N 3
8 4 6 7 leltned N 0 1 N N 3 N < 3 3 N
9 nesym 3 N ¬ N = 3
10 8 9 bitr2di N 0 1 N N 3 ¬ N = 3 N < 3
11 elnnnn0c N N 0 1 N
12 orc N = 1 N = 1 N = 2
13 12 2a1d N = 1 N N < 3 N = 1 N = 2
14 eluz2b3 N 2 N N 1
15 eluz2 N 2 2 N 2 N
16 2a1 N = 2 2 N 2 N N < 3 N = 2
17 zre 2 2
18 zre N N
19 id 2 N 2 N
20 leltne 2 N 2 N 2 < N N 2
21 17 18 19 20 syl3an 2 N 2 N 2 < N N 2
22 2z 2
23 simpr N N < 3 2 < N 2 < N
24 df-3 3 = 2 + 1
25 24 a1i N 3 = 2 + 1
26 25 breq2d N N < 3 N < 2 + 1
27 26 biimpa N N < 3 N < 2 + 1
28 27 adantr N N < 3 2 < N N < 2 + 1
29 btwnnz 2 2 < N N < 2 + 1 ¬ N
30 22 23 28 29 mp3an2i N N < 3 2 < N ¬ N
31 30 pm2.21d N N < 3 2 < N N N = 2
32 31 exp31 N N < 3 2 < N N N = 2
33 32 com24 N N 2 < N N < 3 N = 2
34 33 pm2.43i N 2 < N N < 3 N = 2
35 34 3ad2ant2 2 N 2 N 2 < N N < 3 N = 2
36 21 35 sylbird 2 N 2 N N 2 N < 3 N = 2
37 36 com12 N 2 2 N 2 N N < 3 N = 2
38 16 37 pm2.61ine 2 N 2 N N < 3 N = 2
39 15 38 sylbi N 2 N < 3 N = 2
40 39 imp N 2 N < 3 N = 2
41 40 olcd N 2 N < 3 N = 1 N = 2
42 41 ex N 2 N < 3 N = 1 N = 2
43 14 42 sylbir N N 1 N < 3 N = 1 N = 2
44 43 expcom N 1 N N < 3 N = 1 N = 2
45 13 44 pm2.61ine N N < 3 N = 1 N = 2
46 11 45 sylbir N 0 1 N N < 3 N = 1 N = 2
47 46 3adant3 N 0 1 N N 3 N < 3 N = 1 N = 2
48 10 47 sylbid N 0 1 N N 3 ¬ N = 3 N = 1 N = 2
49 48 impcom ¬ N = 3 N 0 1 N N 3 N = 1 N = 2
50 49 orcd ¬ N = 3 N 0 1 N N 3 N = 1 N = 2 N = 3
51 df-3or N = 1 N = 2 N = 3 N = 1 N = 2 N = 3
52 50 51 sylibr ¬ N = 3 N 0 1 N N 3 N = 1 N = 2 N = 3
53 52 ex ¬ N = 3 N 0 1 N N 3 N = 1 N = 2 N = 3
54 2 53 pm2.61i N 0 1 N N 3 N = 1 N = 2 N = 3