Metamath Proof Explorer


Theorem nn0abscl

Description: The absolute value of an integer is a nonnegative integer. (Contributed by NM, 27-Feb-2005) (Proof shortened by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion nn0abscl A A 0

Proof

Step Hyp Ref Expression
1 zre A A
2 absz A A A
3 1 2 syl A A A
4 3 ibi A A
5 zcn A A
6 absge0 A 0 A
7 5 6 syl A 0 A
8 elnn0z A 0 A 0 A
9 4 7 8 sylanbrc A A 0