Metamath Proof Explorer


Theorem nn0addge1

Description: A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005)

Ref Expression
Assertion nn0addge1 A N 0 A A + N

Proof

Step Hyp Ref Expression
1 nn0re N 0 N
2 nn0ge0 N 0 0 N
3 1 2 jca N 0 N 0 N
4 addge01 A N 0 N A A + N
5 4 biimp3a A N 0 N A A + N
6 5 3expb A N 0 N A A + N
7 3 6 sylan2 A N 0 A A + N