Metamath Proof Explorer


Theorem nn0difffzod

Description: A nonnegative integer that is not in the half-open range from 0 to N is at least N . (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses nn0difffzod.1 φ N
nn0difffzod.2 φ M 0 0 ..^ N
Assertion nn0difffzod φ ¬ M < N

Proof

Step Hyp Ref Expression
1 nn0difffzod.1 φ N
2 nn0difffzod.2 φ M 0 0 ..^ N
3 2 eldifbd φ ¬ M 0 ..^ N
4 2 eldifad φ M 0
5 elfzo0z M 0 ..^ N M 0 N M < N
6 5 biimpri M 0 N M < N M 0 ..^ N
7 6 3expa M 0 N M < N M 0 ..^ N
8 7 con3i ¬ M 0 ..^ N ¬ M 0 N M < N
9 imnan M 0 N ¬ M < N ¬ M 0 N M < N
10 8 9 sylibr ¬ M 0 ..^ N M 0 N ¬ M < N
11 10 imp ¬ M 0 ..^ N M 0 N ¬ M < N
12 3 4 1 11 syl12anc φ ¬ M < N