Metamath Proof Explorer


Theorem nn0disj

Description: The first N + 1 elements of the set of nonnegative integers are distinct from any later members. (Contributed by AV, 8-Nov-2019)

Ref Expression
Assertion nn0disj 0 N N + 1 =

Proof

Step Hyp Ref Expression
1 elinel2 k 0 N N + 1 k N + 1
2 eluzle k N + 1 N + 1 k
3 1 2 syl k 0 N N + 1 N + 1 k
4 eluzel2 k N + 1 N + 1
5 1 4 syl k 0 N N + 1 N + 1
6 eluzelz k N + 1 k
7 1 6 syl k 0 N N + 1 k
8 zlem1lt N + 1 k N + 1 k N + 1 - 1 < k
9 5 7 8 syl2anc k 0 N N + 1 N + 1 k N + 1 - 1 < k
10 3 9 mpbid k 0 N N + 1 N + 1 - 1 < k
11 elinel1 k 0 N N + 1 k 0 N
12 elfzle2 k 0 N k N
13 11 12 syl k 0 N N + 1 k N
14 7 zred k 0 N N + 1 k
15 elin k 0 N N + 1 k 0 N k N + 1
16 elfzel2 k 0 N N
17 16 adantr k 0 N k N + 1 N
18 15 17 sylbi k 0 N N + 1 N
19 18 zred k 0 N N + 1 N
20 14 19 lenltd k 0 N N + 1 k N ¬ N < k
21 18 zcnd k 0 N N + 1 N
22 pncan1 N N + 1 - 1 = N
23 21 22 syl k 0 N N + 1 N + 1 - 1 = N
24 23 eqcomd k 0 N N + 1 N = N + 1 - 1
25 24 breq1d k 0 N N + 1 N < k N + 1 - 1 < k
26 25 notbid k 0 N N + 1 ¬ N < k ¬ N + 1 - 1 < k
27 20 26 bitrd k 0 N N + 1 k N ¬ N + 1 - 1 < k
28 13 27 mpbid k 0 N N + 1 ¬ N + 1 - 1 < k
29 10 28 pm2.21dd k 0 N N + 1 k
30 29 ssriv 0 N N + 1
31 ss0 0 N N + 1 0 N N + 1 =
32 30 31 ax-mp 0 N N + 1 =