Metamath Proof Explorer


Theorem nn0e

Description: An alternate characterization of an even nonnegative integer. (Contributed by AV, 22-Jun-2020)

Ref Expression
Assertion nn0e N 0 N Even N 2 0

Proof

Step Hyp Ref Expression
1 nn0ge0 N 0 0 N
2 nn0re N 0 N
3 2re 2
4 3 a1i N 0 2
5 2pos 0 < 2
6 5 a1i N 0 0 < 2
7 ge0div N 2 0 < 2 0 N 0 N 2
8 2 4 6 7 syl3anc N 0 0 N 0 N 2
9 1 8 mpbid N 0 0 N 2
10 evendiv2z N Even N 2
11 9 10 anim12ci N 0 N Even N 2 0 N 2
12 elnn0z N 2 0 N 2 0 N 2
13 11 12 sylibr N 0 N Even N 2 0