Metamath Proof Explorer


Theorem nn0ehalf

Description: The half of an even nonnegative integer is a nonnegative integer. (Contributed by AV, 22-Jun-2020) (Revised by AV, 28-Jun-2021) (Proof shortened by AV, 10-Jul-2022)

Ref Expression
Assertion nn0ehalf N 0 2 N N 2 0

Proof

Step Hyp Ref Expression
1 nn0z N 0 N
2 evend2 N 2 N N 2
3 1 2 syl N 0 2 N N 2
4 nn0re N 0 N
5 2rp 2 +
6 5 a1i N 0 2 +
7 nn0ge0 N 0 0 N
8 4 6 7 divge0d N 0 0 N 2
9 8 anim1ci N 0 N 2 N 2 0 N 2
10 elnn0z N 2 0 N 2 0 N 2
11 9 10 sylibr N 0 N 2 N 2 0
12 11 ex N 0 N 2 N 2 0
13 3 12 sylbid N 0 2 N N 2 0
14 13 imp N 0 2 N N 2 0