Metamath Proof Explorer


Theorem nn0enne

Description: A positive integer is an even nonnegative integer iff it is an even positive integer. (Contributed by AV, 30-May-2020)

Ref Expression
Assertion nn0enne N N 2 0 N 2

Proof

Step Hyp Ref Expression
1 elnn0 N 2 0 N 2 N 2 = 0
2 nncn N N
3 2cnd N 2
4 2ne0 2 0
5 4 a1i N 2 0
6 2 3 5 diveq0ad N N 2 = 0 N = 0
7 eleq1 N = 0 N 0
8 0nnn ¬ 0
9 8 pm2.21i 0 N 2
10 7 9 syl6bi N = 0 N N 2
11 10 com12 N N = 0 N 2
12 6 11 sylbid N N 2 = 0 N 2
13 12 com12 N 2 = 0 N N 2
14 13 jao1i N 2 N 2 = 0 N N 2
15 1 14 sylbi N 2 0 N N 2
16 15 com12 N N 2 0 N 2
17 nnnn0 N 2 N 2 0
18 16 17 impbid1 N N 2 0 N 2