Metamath Proof Explorer


Theorem nn0ennn

Description: The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004)

Ref Expression
Assertion nn0ennn 0

Proof

Step Hyp Ref Expression
1 nn0ex 0 V
2 nnex V
3 nn0p1nn x 0 x + 1
4 nnm1nn0 y y 1 0
5 nncn y y
6 nn0cn x 0 x
7 ax-1cn 1
8 subadd y 1 x y 1 = x 1 + x = y
9 7 8 mp3an2 y x y 1 = x 1 + x = y
10 eqcom x = y 1 y 1 = x
11 eqcom y = 1 + x 1 + x = y
12 9 10 11 3bitr4g y x x = y 1 y = 1 + x
13 addcom 1 x 1 + x = x + 1
14 7 13 mpan x 1 + x = x + 1
15 14 eqeq2d x y = 1 + x y = x + 1
16 15 adantl y x y = 1 + x y = x + 1
17 12 16 bitrd y x x = y 1 y = x + 1
18 5 6 17 syl2anr x 0 y x = y 1 y = x + 1
19 1 2 3 4 18 en3i 0