Metamath Proof Explorer


Theorem nn0expcld

Description: Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses nn0expcld.1 φ A 0
nn0expcld.2 φ N 0
Assertion nn0expcld φ A N 0

Proof

Step Hyp Ref Expression
1 nn0expcld.1 φ A 0
2 nn0expcld.2 φ N 0
3 nn0expcl A 0 N 0 A N 0
4 1 2 3 syl2anc φ A N 0