Metamath Proof Explorer


Theorem nn0ge2m1nn

Description: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018) (Revised by AV, 4-Jan-2020)

Ref Expression
Assertion nn0ge2m1nn N 0 2 N N 1

Proof

Step Hyp Ref Expression
1 simpl N 0 2 N N 0
2 1red N 0 1
3 2re 2
4 3 a1i N 0 2
5 nn0re N 0 N
6 2 4 5 3jca N 0 1 2 N
7 6 adantr N 0 2 N 1 2 N
8 simpr N 0 2 N 2 N
9 1lt2 1 < 2
10 8 9 jctil N 0 2 N 1 < 2 2 N
11 ltleletr 1 2 N 1 < 2 2 N 1 N
12 7 10 11 sylc N 0 2 N 1 N
13 elnnnn0c N N 0 1 N
14 1 12 13 sylanbrc N 0 2 N N
15 nn1m1nn N N = 1 N 1
16 14 15 syl N 0 2 N N = 1 N 1
17 breq2 N = 1 2 N 2 1
18 1re 1
19 18 3 ltnlei 1 < 2 ¬ 2 1
20 pm2.21 ¬ 2 1 2 1 N 1
21 19 20 sylbi 1 < 2 2 1 N 1
22 9 21 ax-mp 2 1 N 1
23 17 22 syl6bi N = 1 2 N N 1
24 23 adantld N = 1 N 0 2 N N 1
25 ax-1 N 1 N 0 2 N N 1
26 24 25 jaoi N = 1 N 1 N 0 2 N N 1
27 16 26 mpcom N 0 2 N N 1