Step |
Hyp |
Ref |
Expression |
1 |
|
nn0gsumfz.b |
|
2 |
|
nn0gsumfz.0 |
|
3 |
|
nn0gsumfz.g |
|
4 |
|
nn0gsumfz.f |
|
5 |
|
nn0gsumfz.y |
|
6 |
2
|
fvexi |
|
7 |
4 6
|
jctir |
|
8 |
|
fsuppmapnn0ub |
|
9 |
7 5 8
|
sylc |
|
10 |
|
eqidd |
|
11 |
|
simpr |
|
12 |
3
|
adantr |
|
13 |
4
|
adantr |
|
14 |
|
simpr |
|
15 |
|
eqid |
|
16 |
1 2 12 13 14 15
|
fsfnn0gsumfsffz |
|
17 |
16
|
imp |
|
18 |
13
|
adantr |
|
19 |
|
fz0ssnn0 |
|
20 |
|
elmapssres |
|
21 |
18 19 20
|
sylancl |
|
22 |
|
eqeq1 |
|
23 |
|
oveq2 |
|
24 |
23
|
eqeq2d |
|
25 |
22 24
|
3anbi13d |
|
26 |
25
|
adantl |
|
27 |
21 26
|
rspcedv |
|
28 |
10 11 17 27
|
mp3and |
|
29 |
28
|
ex |
|
30 |
29
|
reximdva |
|
31 |
9 30
|
mpd |
|