Metamath Proof Explorer


Theorem nn0gsumfz

Description: Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019)

Ref Expression
Hypotheses nn0gsumfz.b B = Base G
nn0gsumfz.0 0 ˙ = 0 G
nn0gsumfz.g φ G CMnd
nn0gsumfz.f φ F B 0
nn0gsumfz.y φ finSupp 0 ˙ F
Assertion nn0gsumfz φ s 0 f B 0 s f = F 0 s x 0 s < x F x = 0 ˙ G F = G f

Proof

Step Hyp Ref Expression
1 nn0gsumfz.b B = Base G
2 nn0gsumfz.0 0 ˙ = 0 G
3 nn0gsumfz.g φ G CMnd
4 nn0gsumfz.f φ F B 0
5 nn0gsumfz.y φ finSupp 0 ˙ F
6 2 fvexi 0 ˙ V
7 4 6 jctir φ F B 0 0 ˙ V
8 fsuppmapnn0ub F B 0 0 ˙ V finSupp 0 ˙ F s 0 x 0 s < x F x = 0 ˙
9 7 5 8 sylc φ s 0 x 0 s < x F x = 0 ˙
10 eqidd φ s 0 x 0 s < x F x = 0 ˙ F 0 s = F 0 s
11 simpr φ s 0 x 0 s < x F x = 0 ˙ x 0 s < x F x = 0 ˙
12 3 adantr φ s 0 G CMnd
13 4 adantr φ s 0 F B 0
14 simpr φ s 0 s 0
15 eqid F 0 s = F 0 s
16 1 2 12 13 14 15 fsfnn0gsumfsffz φ s 0 x 0 s < x F x = 0 ˙ G F = G F 0 s
17 16 imp φ s 0 x 0 s < x F x = 0 ˙ G F = G F 0 s
18 13 adantr φ s 0 x 0 s < x F x = 0 ˙ F B 0
19 fz0ssnn0 0 s 0
20 elmapssres F B 0 0 s 0 F 0 s B 0 s
21 18 19 20 sylancl φ s 0 x 0 s < x F x = 0 ˙ F 0 s B 0 s
22 eqeq1 f = F 0 s f = F 0 s F 0 s = F 0 s
23 oveq2 f = F 0 s G f = G F 0 s
24 23 eqeq2d f = F 0 s G F = G f G F = G F 0 s
25 22 24 3anbi13d f = F 0 s f = F 0 s x 0 s < x F x = 0 ˙ G F = G f F 0 s = F 0 s x 0 s < x F x = 0 ˙ G F = G F 0 s
26 25 adantl φ s 0 x 0 s < x F x = 0 ˙ f = F 0 s f = F 0 s x 0 s < x F x = 0 ˙ G F = G f F 0 s = F 0 s x 0 s < x F x = 0 ˙ G F = G F 0 s
27 21 26 rspcedv φ s 0 x 0 s < x F x = 0 ˙ F 0 s = F 0 s x 0 s < x F x = 0 ˙ G F = G F 0 s f B 0 s f = F 0 s x 0 s < x F x = 0 ˙ G F = G f
28 10 11 17 27 mp3and φ s 0 x 0 s < x F x = 0 ˙ f B 0 s f = F 0 s x 0 s < x F x = 0 ˙ G F = G f
29 28 ex φ s 0 x 0 s < x F x = 0 ˙ f B 0 s f = F 0 s x 0 s < x F x = 0 ˙ G F = G f
30 29 reximdva φ s 0 x 0 s < x F x = 0 ˙ s 0 f B 0 s f = F 0 s x 0 s < x F x = 0 ˙ G F = G f
31 9 30 mpd φ s 0 f B 0 s f = F 0 s x 0 s < x F x = 0 ˙ G F = G f