Metamath Proof Explorer


Theorem nn0gsumfz0

Description: Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019)

Ref Expression
Hypotheses nn0gsumfz.b B = Base G
nn0gsumfz.0 0 ˙ = 0 G
nn0gsumfz.g φ G CMnd
nn0gsumfz.f φ F B 0
nn0gsumfz.y φ finSupp 0 ˙ F
Assertion nn0gsumfz0 φ s 0 f B 0 s G F = G f

Proof

Step Hyp Ref Expression
1 nn0gsumfz.b B = Base G
2 nn0gsumfz.0 0 ˙ = 0 G
3 nn0gsumfz.g φ G CMnd
4 nn0gsumfz.f φ F B 0
5 nn0gsumfz.y φ finSupp 0 ˙ F
6 1 2 3 4 5 nn0gsumfz φ s 0 f B 0 s f = F 0 s x 0 s < x F x = 0 ˙ G F = G f
7 simp3 f = F 0 s x 0 s < x F x = 0 ˙ G F = G f G F = G f
8 7 reximi f B 0 s f = F 0 s x 0 s < x F x = 0 ˙ G F = G f f B 0 s G F = G f
9 8 reximi s 0 f B 0 s f = F 0 s x 0 s < x F x = 0 ˙ G F = G f s 0 f B 0 s G F = G f
10 6 9 syl φ s 0 f B 0 s G F = G f